

รายงานฉบับสมบูรณ์

โครงการวิจัยศึกษาต้นทุนบริการของโรงเรียนแพทย์ : เรื่อง ประสิทธิภาพทางเทคนิคและปัจจัยที่กำหนดประสิทธิภาพ ทางเทคนิคของโรงพยาบาลศูนย์ในประเทศไทย

ภายใต้ชุดโครงการพัฒนารูปแบบและอัตราการจ่าย สถานพยาบาลในระบบหลักประกันสุขภาพถ้วนหน้า

จัดทำโดย

สำนักงานวิจัยเพื่อการพัฒนาหลักประกันสุขภาพไทย(สวปก.)
เครือสถาบันวิจัยระบบสาธารณสุข (สวรส.)

ได้รับการสนับสนุนจาก

สำนักงานหลักประกันสุขภาพแห่งชาติ (สปสช.)

กันยายน 2554

รายงานฉบับสมบูรณ์

โครงการวิจัยศึกษาต้นทุนบริการของโรงเรียนแพทย์ : เรื่อง ประสิทธิภาพทางเทคนิคและปัจจัยที่กำหนดประสิทธิภาพทางเทคนิค ของโรงพยาบาลศูนย์ในประเทศไทย

ภายใต้ชุดโครงการพัฒนารูปแบบและอัตราการจ่ายสถานพยาบาล ในระบบหลักประกันสขภาพถ้วนหน้า

จัดทำโดย

สำนักงานวิจัยเพื่อการพัฒนาหลักประกันสุขภาพไทย (สวปก.)
เครือสถาบันวิจัยระบบสาธารณสุข (สวรส.)

ได้รับการสนับสนุนจาก

สำนักงานหลักประกันสุขภาพแห่งชาติ (สปสช.)

ประสิทธิภาพทางเทคนิคและปัจจัยที่กำหนดประสิทธิภาพทางเทคนิค ของโรงพยาบาลศูนย์ในประเทศไทย นายวิเชียรเทียนจารุวัฒนา* และ รศ. ดร. พงศาพรซัยวิเศษกุล

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพทางเทคนิคและปัจจัยที่กำหนดประสิทธิภาพทางเทคนิคของ โรงพยาบาลระดับมหาวิทยาลัย 7 แห่ง โรงพยาบาลศูนย์ 24 แห่ง และโรงพยาบาลทั่วไปของกระทรวงสาธารณสุขใน ประเทศไทยโดยใช้ข้อมูลของโรงพยาบาลทั้งหมด 74 แห่งในปีพ.ศ. 2552

ขั้นแรกการวัดประสิทธิภาพทางเทคนิคโดยการวิเคราะห์แบบ Data Envelopment Analysis ผลการวิเคราะห์ พบว่ามี 53 โรงพยาบาลจาก 74 โรงพยาบาลที่มีค่าประสิทธิภาพทางเทคนิคที่แท้จริงสูงสุดคิดเป็น 71.62% ของ โรงพยาบาลทั้งหมดที่ศึกษาเมื่อเรียงลำดับเปอร์เซ็นต์โรงพยาบาลที่มีค่าประสิทธิภาพทางเทคนิคที่แท้จริงสูงที่สุดใน 3 กลุ่ม และ สูงกว่าโรงพยาบาลศูนย์โรงพยาบาลทั่วไปตามลำดับ (85.7%, 83.3%, and 62.8%) ในขณะที่เปอร์เซ็นต์ประสิทธิภาพ ทางขนาดเรียงลำดับจากมากไปน้อยพบว่าโรงพยาบาลศูนย์โรงพยาบาลสูนย์โรงพยาบาลกัวไป ตามลำดับ (75.0%, 71.4%, and 44.2%)

ขั้นที่สองการศึกษาปัจจัยที่กำหนดประสิทธิภาพทางเทคนิคของโรงพยาบาลทั้ง 3 กลุ่มโดยใช้เทคนิคการ วิเคราะห์สมการถดถอยแบบ ordinary least square estimation พบว่าอัตราส่วนจำนวนเตียงต่อแพทย์จำนวนแพทย์ และอัตราส่วนพยาบาลต่อแพทย์ทั้ง 3 ปัจจัยมีผลต่อค่าประสิทธิภาพที่แท้จริงอย่างมีนัยสำคัญทางสถิติโดยปัจจัยที่มีผล ในทางบวกต่อค่าประสิทธิภาพที่แท้จริงมากที่สุดคืออัตราส่วนจำนวนเตียงต่อแพทย์แต่ปัจจัยที่มีผลในทางลบต่อค่า ประสิทธิภาพที่แท้จริงคือ อัตราส่วนพยาบาลต่อแพทย์ในขณะที่ปัจจัยมีผลต่อค่าประสิทธิภาพทางขนาดอย่างมี นัยสำคัญทางสถิติคือ จำนวนครั้งของผู้ป่วยในคูณค่ามัธยฐานของน้ำหนักสัมพัทธ์ของกลุ่มวินิจฉัยโรคร่วม

คำสำคัญ : ประสิทธิภาพทางเทคนิค; ปัจจัยที่กำหนดประสิทธิภาพทางเทคนิค; โรงพยาบาล; ประเทศไทย

Contents

บทคัดย่อ	2
Abstract	5
Introduction	6
Literature Review	7
Research Methodology	7
Results and Discussion	12
Conclusion and Recommendation	18
References	19

Contents of Tables

able 1 Aggregated inputs, abbreviations, operational definitions and units	9
able 2 Aggregated outputs, abbreviations, operational definitions and units	10
able 3 Some explanatory variables of TEVRS scores, abbreviations and operational definitions	11
able 4 Descriptive statistics of types of hospitals and numbers of beds	12
able 5 Descriptive statistics of input mix of DEA (normal distribution)	12
able 6 Descriptive statistics of input mix of DEA (skewed)	13
able 7 Descriptive statistics of efficiency scores of each group of hospitals	13
able 8 Results of DEA model: input-orientated measurementof 24 regional hospitals	14
able 9 Results of DEA model: input-orientated measurementof 43 general hospitals	15
able 10 Results of DEA model: input-orientated measurementof 7 university hospitals	16
able 11 OLS estimation for TEVRS	17
able 12 OLS estimation for SE	18

5

Hospital Production Function

Technical Efficiency and Its Determinants of University, Regional, and General Hospitals in Thailand

Mr. Wichian Thianjaruwatthana* and Associate Professor Pongsa Pornchaiwiseskul

Abstract

Input-orientated Data Envelopment Analysis was used to measure the technical efficiency of 7

university hospitals, 24 regional hospitals and 43 general hospitals in Thailand in year 2009. The results

revealed there were 53 efficient hospitals (71.62%) from 74 total hospitals; in addition, the percentages of

efficient hospitalsin order of highest to least percentage were university, regional, and general hospital

(85.7%, 83.3%, and 62.8%). While the percentages of scale efficiency (SE = 1) in order of highest to least

percentage were regional, university, and general hospitals (75.0%, 71.4%, and 44.2%).

The next step was to identify the determinants of hospital efficiency with regression analysis using

ordinary least squares (OLS). The results revealed three significant explanatory variables for TEVRSi scores

such as bed-physician ratio, numbers of physicians, and nurses-physician ratio. The most positive influential

determinant of TEVRS scores was bed-physician ratio; however, the negative influential determinant of

TEVRS scores was nurse-physician ratio. While the significant explanatory variable for scale efficiency (SEi)

scores was the in-patient visits adjusted with median relative weight of DRG.

Key words: Technical efficiency; DEA; Determinant; Hospital

Introduction

1.1 Problem and its significance

University hospitals have a lot of specialists, sub-specialists and paramedics who service both health care and academic services. They provide numerous high technology medical equipments and buildings to serve all sophisticate activities. Public regional hospitals in Thailand also serve both health care and medical education services while most general hospitals serve only health care service. So unit cost of university hospitals should be higher than regional and general hospitals. This study is one in three parts of comparable study about unit cost of treatment between university hospitals and large public hospitals including regional and large general hospitals which operate equal or more than 200 beds in Thailand. The part one is the study of technical efficiency and its determinants of these hospitals to select the efficient hospitals for further studies. The part two is the cost function to determine the significant factors involving the total cost of treatment of hospitals. In addition, the part three is the unit cost calculation of targeting hospitals to decide the magnitude of the cost difference between university hospitals and large public hospitals.

1.2 Research questions

- 1. What are the levels of technical efficiency scores of 11 university hospitals, all public regional and general hospitals in Thailand?
- 2. What explanatory variables do affect the efficiency scores of 11 university hospitals, all public regional and general hospitals?

1.3 Research objectives

- To identify technical efficiency of 11 university hospitals, all public regional and general hospitals (≥200 beds) in Thailand
- 2. To identify the factors affecting on the efficiency of 11 university hospitals, all public regional and general hospitals (determinants of hospital efficiency)

Literature Review

2.1 Theoretical Data Envelopment Analysis

Data Envelopment Analysis (DEA) is the most popular technique which uses the concept of linear programming to evaluate the efficiency score of many businesses by construction of a non-parametric piecewise surface, or frontier, over the data to calculate efficiencies relative to this surface. DEA can measure the hospital efficiency of multiple inputs and outputs model (Bhat, Verma, & Reuben, 2001).

1. Concept of hospital efficiency measurement:

- 1) Output-orientated measurement or maximal possible output from a given set of inputs assumes that the firm can change quantities of inputs, while quantities of outputs are fixed, to meet the most efficient point.
- 2) Input-orientated measurement or minimal possible input from a given set of output sassumes that quantities of outputs can change to match with the most efficiency point while quantities of inputs are fixed.

2. Previous study on hospital efficiency measurement

Data envelopment analysis (DEA) was used to compare the frontiers of hospitals in the US in 1994 and 1995. The results revealed teaching hospitals were more efficient than non-teaching hospitals (Grosskopf, Margaritis, & Valdmanis, 2001, & 2004).

3. Previous study on hospital efficiency in Thailand

All 805 public hospitals in Thailand in year 2001 and 2006 were studied by usage of the data envelopment analysis. The large hospitals were more efficient than small ones and the average pure technical efficiency score of all public hospitals was 67.3% (Charunwatthana, 2007).

Research Methodology

Study design and samples

This was a descriptive study employing econometric techniques for its analysis. A cross section model with secondary data of all 74 hospitals from the year 2009 was used for input-orientated measurement, data envelopment analysis (DEA) and regression analysis using ordinary least squares

(OLS). The available data included 7 university hospitals, 24 regional hospitals and 43 general hospitals which had more than 200 beds so the whole hospitals were 74 hospitals.

Analysis technique:

This study consisted of two stages. The first stage was to measure the technical efficiency of interesting hospitals with the data envelopment analysis (DEA) using input-orientated measurement. There were 6 input mixes and 6 output mixes were used to evaluate the hospital efficiency. Six aggregated inputs included the numbers of beds, physicians, nurses, other personnel, capital cost, and material cost while six aggregated outputs included the numbers of out-patient visits, in-patient visits adjusted median relative weight of diagnostic related group (DRG), graduated medical student, graduated residents, publicized researches, and inverse hospital standardized mortality ratio. The results of DEA shows the technical efficiency under constant return to scale assumption (TECRS) scores, pure technical efficiency or technical efficiency under variable return to scale (TEVRS) scores, scale efficiency (SE) scores, and the patterns of scale inefficiencies which have two patterns of scale inefficiencies that are increasing return to scale (irs) and decreasing return to scale (drs).

The second stage was to identify the factors affecting on the efficiency of these hospitals (determinants of hospital efficiency) with regression analysis using ordinary least squares (OLS). Technical efficiency under variable return to scale assumption (TEVRS) and scale efficiency (SE) were dependent variables while seven explanatory variables as the hospital efficiency determinants were estimated the magnitude and direction of their relation. There were seven explanatory variables as following: bed-physician ratio (B/P), the numbers of physicians, the numbers of physicians in form of square, nurses-physician ratio (N/P), other personnel-physician ratio (OP/P), out-patient visits (O), and in-patient visits adjusted with median relative weight of diagnostic related group (IRW). There were two interesting relations as following:

1) Relation between 5 explanatory variables and TEVRS

$$TEVRS_i = c_0 + c_1 *B/P_i + c_2 *P_i + c_3 *P_i^2 + c_4 *N/P_i + c_5 *OP/P_i + e$$

2) Relation between 2 explanatoryvariables and SE

$$SE_{i}=c_{0}+c_{1}*Ln(O_{i})+c_{2}*Ln(IRW_{i})+e$$

Data required

All secondary data in year 2009 was annual report from each hospitals and Health Insurance Group, Ministry of Public Health. The aggregated inputs, abbreviations, operational definitions and units were shown as table 1 while the aggregated outputs, abbreviations, operational definitions and units were presented as table 2.In addition, some explanatory variables of TEVRS scores, abbreviations and operational definitions were revealed as table 3.

Table 1 Aggregated inputs, abbreviations, operational definitions and units

Aggregated inputs	Abbr.	Operational definitions	Units
• Numbers of beds in	B_{i}	Counts every beds for in-patient services in	beds
hospital <i>i</i> in year 2009		each hospital in year 2009	
Numbers of physicians in	P_i	Counts every physicians in each hospital in year	persons
hospital i in year 2009		2009 (including interns, refunding physicians,	
		and residents)	
Numbers of physician	PS_i	Counts every physician staffs in each hospital in	persons
staffs in hospital <i>i</i> in year		year 2009 (not including interns, refunding	
2009		physicians, and residents)	
Numbers of nurses in	N_i	Counts every registered and technical nurses in	persons
hospital <i>i</i> in year 2009		each hospital in year 2009	
• Numbers of other	OP_i	Counts every other personnel in each hospital in	persons
personnel in hospital i in		year 2009 (not including physicians, and	
year 2009		nurses)	
• Capital cost in hospital i	CC_i	Includes cost of buildings, equipments, vehicles	bahts
in year 2009		and depreciation in each hospital in year 2009	
• Material cost in hospital i	MC_i	Includes cost of supplies, operation and	bahts
in year 2009		maintenance in each hospital in year 2009	

Table 2 Aggregated outputs, abbreviations, operational definitions and units

Aggregated outputs	Abbr.	Operational definitions	Units
Numbers of out-patient	O_i	Counts every beds for in-patient services in	visits
visits in hospital <i>i</i> in year		each hospital in year 2009	
2009			
• Numbers of in-patient visits	l _i	Counts every visit that was admitted in in-	visits
in hospital i in year 2009		patient care units for whole year in each	
		hospital in year 2009	
• Median adjusted relative	RW_{i}	The proxy of related-patient types treated to the	-
weight of diagnostic		resources they consumed in each hospital in	
related group (DRG) in		year 2009	
hospital i in year 2009			
Numbers of graduated	MS,	Counts every graduated medical student in	persons
medical student in hospital		each hospital in year 2009	
<i>i</i> in year 2009			
Numbers of graduated or	R_i	Counts every graduated or trained residents in	persons
trained residents in hospital		each hospital in year 2009	
<i>i</i> in year 2009			
Numbers of publicized	PR_i	Counts every publicized researches (domestic,	researches
researches (domestic,		international) in each hospital in year 2009	
international) in hospital <i>i</i> in			
year 2009			
Hospital standardized	$HSMR_i$	Hospital standardized mortality ratio (MR)	-
mortality ratio		= Observed deaths/ Expected deaths × 100	

Table 3 Some explanatory variables of TEVRS scores, abbreviations and operational definitions

Explanatory variables of	Abbr.	Operational definitions		
TEVRS scores				
●Bed-physician ratio of	B/P _i	The proportion of numbers of beds and numbers of		
hospital i in year2009		physicians (beds/physician) was a proxy for size		
		determination of input combination between bed and		
		physician.		
●Numbers of physicians in	P_i^2	This form of square in equation used to find out the		
hospital <i>i</i> in year 2009 in		maximum/ minimum numbers of physicians to provide		
form of square		TEVRS scores.		
●Nurses-physician ratio of	N/P _i	The proportion of numbers of nurses and numbers of		
hospital i in year 2009		physicians (nurses/physician) was a proxy for size		
		determination of input labor combination between nurse		
		and physician.		
●Other personnel-physician	OP/P _i	The proportion of numbers of other personnel and		
ratio of hospital i in year		numbers of physicians (other personnel/physician) was a		
2009		proxy for size determination of input labor combination		
		between other personnel and physician.		

Results and Discussion

Descriptive analysis of the input mix and output mix of DEA

There were seventy four hospitals included in this study and the range of numbers of beds was 209-2,198 beds. Descriptive statistics of types of hospitals and numbers of beds were shown in table 4.

Table 4 Descriptive statistics of types of hospitals and numbers of beds

Tunes of Heapitals	Collected Data	Beds		
Types of Hospitals	(hospitals)	Min.	Mean	Max.
 University hospitals 	7	526	1,137.3	2,198
 Regional hospitals 	24	452	710.4	1,072
General hospitals				
(≥ 200 beds)	43	209	374.2	564
Total	74	_		

There were six multiple inputs as presented in table 5 and table 6 below such as the numbers of beds, physicians, nurses, other personnel, capital cost, and material cost. Only the numbers of beds were normal distribution so a probability distribution of beds used a mean as table 5. While the remained multiple inputs were skewed so a probability distribution of them used a median as table 6.

 Table 5 Descriptive statistics of input mix of DEA (normal distribution)

Descriptive etatistics	Input mix of DEA
Descriptive statistics	Bed
Numbers	74
Mean	555.42
Standard deviation	313.298
Minimum	209
Maximum	2,198
	0.052

Table 6 Descriptive statistics of input mix of DEA (skewed)

Descriptive statistics	Input mix of DEA				
Descriptive statistics	Р	N	OP	Ccost	Mcost
Numbers	74	74	74	74	74
Median	67.00	434.50	1,032.50	39,214,622.00	3.93E8
Percentile 25 th	39.00	325.00	697.75	26,248,022.50	2.08E8
Percentile 75 th	121.75	631.00	1,605.50	68,983,182.00	6.81E8
Minimum	11	174	325	9,923,651	80,911,200
Maximum	1,447	4,874	6,726	541,899,733	5,264,786,910
One-sample K-S test	0.000	0.000	0.002	0.000	0.000
- Asymp. sig. (2-tailed)	0.000	0.000	0.002	0.000	0.000

Results of DEA model: input-orientated measurement

The results of DEA showed the efficiency scores of each group of hospitals as table 7 below. There were 53 from 74 hospitals or 71.62% in this study that the technical efficiency under variable return to scale assumption was 1 (VRS = 1). The percentage of technical efficiency under variable return to scale assumption (VRS = 1) of university hospitals was the highest percent in three groups while the percentage of VRS of general hospitals was least. However, the percentage of scale efficiency (SE = 1) of regional hospitals was maximum in three groups, while the percentage of SE of general hospitals was still minimum.

Table 7 Descriptive statistics of efficiency scores of each group of hospitals

Efficiency	Regional h	ospitals	General hospitals (≥ 200 beds)	University ho	spitals
scores	Frequency	%	Frequency	%	Frequency	%
VRS < 1	4	16.7	16	37.2	1	14.3
VRS = 1	20	83.3	27	62.8	6	85.7
Total	24	100.0	43	100.0	7	100.0
SE < 1	6	25.0	24	55.8	2	28.6
SE = 1	18	75.0	19	44.2	5	71.4
Total	24	100.0	43	100.0	7	100.0

Table 8 Results of DEA model: input-orientated measurement of 24 regional hospitals

No.	CRS	VRS	SE	RTS
1	0.952	0.966	0.985	irs
2	1	1	1	-
3	0.963	1	0.963	irs
4	0.867	0.88	0.986	irs
5	0.959	1	0.959	drs
6	1	1	1	-
7	1	1	1	-
8	1	1	1	-
9	1	1	1	-
10	1	1	1	-
11	1	1	1	-
12	1	1	1	-
13	1	1	1	-
14	1	1	1	-
15	1	1	1	-
16	1	1	1	-
17	1	1	1	-
18	1	1	1	-
19	1	1	1	-
20	1	1	1	-
21	1	1	1	-
22	1	1	1	-
23	0.785	0.787	0.998	irs
24	0.815	0.845	0.964	irs

There were 18 from 24 regional hospitals which their all three efficiency scores equaled 1 (TECRS, TEVRS, and SE scores) such as hospital number 2, 6-22 as table 8. There were 2 from 24 regional hospitals which their TEVRS scores equaled 1 but their SE scores were less than 1 such as hospital number 3, 5. Hospital number 3 had increasing return to scale pattern which meant if it increased its size of hospital, it would be efficient. However, hospital number 5 had decreasing return to scale pattern which meant if it decreased its size of hospital, it would be efficient. While there were 4 from 24 regional hospitals which all three efficiency scores were less than 1 such as hospital number 1, 4, 23, and 24. All hospitals had

increasing return to scale pattern (hospital number 4, 23) which meant if they increased their some input-mix and increased their size of hospitals, they would be efficient.

Table 9 Results of DEA model: input-orientated measurement of 43 general hospitals

				<u> </u>
No.	CRS	VRS	SE	RTS
25	0.857	0.898	0.954	irs
26	0.838	0.857	0.979	irs
27	0.907	1	0.907	irs
28	0.847	0.944	0.897	irs
29	0.688	0.714	0.963	irs
30	0.803	0.929	0.864	irs
31	0.894	1	0.894	irs
32	0.95	0.98	0.97	irs
33	0.665	0.716	0.93	irs
34	0.684	0.72	0.949	irs
35	1	1	1	-
36	1	1	1	-
37	0.985	0.994	0.991	drs
38	1	1	1	-
39	1	1	1	-
40	0.966	0.98	0.986	irs
41	1	1	1	-
42	1	1	1	-
43	1	1	1	-
44	0.881	0.902	0.977	irs
45	1	1	1	-
46	1	1	1	-
47	1	1	1	
48	1	1	1	-
49	1	1	1	
50	1	1	1	
51	1	1	1	-
52	1	1	1	

53 0.781 0.812 0.962 irs 54 1 1 1 - 55 1 1 1 - 56 1 1 1 - 57 0.989 1 0.989 irs 58 0.788 1 0.788 irs 59 1 1 1 -	3	RTS	SE	VRS	CRS	No.
55 1 1 1 - 56 1 1 1 - 57 0.989 1 0.989 irs 58 0.788 1 0.788 irs		irs	0.962	0.812	0.781	53
56 1 1 1 - 57 0.989 1 0.989 irs 58 0.788 1 0.788 irs		-	1	1	1	54
57 0.989 1 0.989 irs 58 0.788 1 0.788 irs		-	1	1	1	55
58 0.788 1 0.788 irs		-	1	1	1	56
		irs	0.989	1	0.989	57
59 1 1 1 -		irs	0.788	1	0.788	58
		-	1	1	1	59
60 0.766 0.839 0.912 irs		irs	0.912	0.839	0.766	60
61 0.998 1 0.998 irs		irs	0.998	1	0.998	61
62 0.967 0.989 0.978 irs		irs	0.978	0.989	0.967	62
63 0.748 1 0.748 irs		irs	0.748	1	0.748	63
64 0.916 1 0.916 irs		irs	0.916	1	0.916	64
65 0.807 0.809 0.997 irs		irs	0.997	0.809	0.807	65
66 0.873 0.884 0.987 irs		irs	0.987	0.884	0.873	66
67 0.995 1 0.995 irs		irs	0.995	1	0.995	67

There were 19 from 43 general hospitals which their all three efficiency scores equaled 1 (TECRS, TEVRS and SE scores) such as hospital number 35, 36, 38, 39, 41-43, 45-52, 54-56 and 59 as table 9. There were 8 from 43 general hospitals which their TEVRS scores equaled 1 but their SE scores were less than 1 such as hospital number 27, 31, 57, 58, 61, 63, 64, and 67. All of them had increasing return to scale pattern which meant if these hospitals increased their size of hospitals, they would be efficient.

Table 10 Results of DEA model: input-orientated measurement of 7 university hospitals

No.	CRS	VRS	SE	RTS
68	1	1	1	-
69	0.812	0.905	0.897	irs
70	1	1	1	-
71	0.934	1	0.934	irs
72	1	1	1	-
73	1	1	1	-
74	1	1	1	-

There were 5 from 7 university hospitals which their all three efficiency scores equaled 1 (TECRS, TEVRS and SE scores) such as hospital number 68, 70, 72-74 as table 10. There was 1 from 7 university hospitals which its TEVRS score equaled 1 but its SE score was less than 1 such as hospital number 71. This hospital had increasing return to scale pattern which meant if it increased its size of hospital, it would be efficient. While there was only 1 from 7 university hospitals which it's all three efficiency scores were less than 1 such as hospital number 69. This hospital had increasing return to scale pattern which meant if this hospital increased its some input-mix and increased its size of hospital, it would be efficient.

Results of regression analysis using ordinary least squares

1) Relation between 5 explanatory variables and TEVRS

$$TEVRS_i = c_0 + c_1 *B/P_i + c_2 *P_i + c_3 *P_i^2 + c_4 *N/P_i + c_5 *OP/P_i + e$$

Table 11 OLS estimation for TEVRS

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.920057	0.040640	22.63912	0.0000
B/P	0.029233	0.007068	4.136113	0.0001
Р	0.000346	0.000153	2.259977	0.0270
P ²	-1.81E-07	1.02E-07	-1.772571	0.0808
N/P	-0.023409	0.005806	-4.031714	0.0001
OP/P	-0.002498	0.001663	-1.502539	0.1376

R-squared = 0.276616 F-statistic = 5.200517

There were three significant explanatory variables for TEVRSi scores such as bed-physician ratio (B/P), numbers of physicians (P),and nurses-physician ratio (N/P) as table 11.It can explain that if bed-physician ratio increased one unit, TEVRSi scores tended to increase 0.0292 units, giving other things were constant. If physician increased one person, TEVRSi scores tended to increase 0.0003 units, giving other things were constant. If nurse-physician ratio increased one unit, TEVRSi scores tended to decrease 0.0234 units, giving other things were constant. The most positive influential determinant of TEVRS scores was bed-physician ratio; however, the most negative influential determinant of TEVRS scores wasnurse-physician ratio.

2) Relation between 2 explanatory variables and SE

$$SE_{i}=c_{0}+c_{1}*Ln(O_{i})+c_{2}*Ln(IRW_{i})+e$$

Table 12 OLS estimation for SE

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.684370	0.139442	4.907933	0.0000
Ln(O)	0.004906	0.016750	0.292883	0.7705
Ln(IRW)	0.022456	0.011081	2.026587	0.0465

R-squared = 0.184916

F-statistic = 8.053814

It can explain that if the in-patient visits adjusted with median relative weight of DRG (IRW) increased one percent, SEi scores tended to increase 0.0224 units, giving other things were constant as table 12.

Conclusion and Recommendation

Conclusion

The results of measurement of the technical efficiency in three groups of hospitals in this study showed there were 53 from 74 hospitals or 71.62% in this study that the technical efficiency under variable return to scale assumption was 1 (VRS = 1); in addition, the percentages of technical efficiency under variable return to scale assumption (VRS = 1) in order of highest to least percentage were university, regional, and general hospital (85.7%, 83.3%, and 62.8%). So the further studies should select the data from 53 efficient hospitals to study the cost function to determine the significant factors involving the total cost of treatment and the unit cost calculation to decide the magnitude of the cost difference between university hospitals and large public hospitals. While the percentages of scale efficiency (SE = 1) in order of highest to least percentage were regional, university, and general hospitals (75.0%, 71.4%, and 44.2%).

The results of identification of factors affecting on the efficiency of these hospitals (determinants of hospital efficiency) showed three significant explanatory variables for TEVRSi scores such as bed-physician ratio (B/P), numbers of physicians (P), and nurses-physician ratio (N/P). The determinants of hospital efficiency in order of highest to least scores were bed-physician ratio (B/P), nurses-physician ratio (N/P), and numbers of physicians (P). The most positive influential determinant of TEVRS scores was bed-physician

ratio; however, the most negative influential determinant of TEVRS scores was nurse-physician ratio. While the significant explanatory variable for scale efficiency (SEi) scores was the in-patient visits adjusted with median relative weight of DRG (IRW).

Limitation of the study

There are some limitations in this study as following:

- 1) A small numbers of the observations. There were only 7 university hospitals in this study so it was difficult to conclude on behalf of the university hospital.
- 2) Time limitation. There were three months for data collection in this study.

Recommendations

In all three groups of hospital, there are efficient hospitals more than inefficient hospitals so the efficient hospitals can be the target hospitals for evaluation cost function in next step.

References

Bhat, R., Verma, B. B. and Reuben, (2001). Data envelopment analysis (DEA). *Journal of Health Management*, 3: 309-328.

Charunwatthana, W. (2007). Measuring hospital efficiency of public hospitals under office of permanent secretary of Ministry of Public Health in Thailand: a data envelopment analysis approach. Master's Thesis, Chulalongkorn University, 1-64.

Grosskopf, S., Margaritis, D. and Valdmanis, V. (2001a). Comparing teaching and non-teaching hospitals: a frontier approach (teaching vs. non-teaching hospitals). *Health Care Management Science*, 4: 83-90.

Grosskopf, S., Margaritis, D. and Valdmanis, V. (2004). Competitive effects on teaching hospitals. *European Journal of Operational Research*, 154: 515-525.