ASIAN ARCHIVES OF PATHOLOGY

THE OFFICIAL JOURNAL OF THE ROYAL COLLEGE OF PATHOLOGISTS OF THAILAND

Volume 1 Number 2 April – June 2019

Print ISSN: 1905-9183

Online ISSN: 2673-0499

EDITORIAL BOARD

Editor-in-Chief

Dr Chetana Ruangpratheep

MD, FRCPath (Thailand), MSc, PhD

Phramongkutklao College of Medicine, Bangkok, Thailand

Associate Editors

Associate Professor Dr Mongkol Kunakorn

MD, FRCPath (Thailand)

Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Associate Professor Dr Theerapong Krajaejun

MD, FRCPath (Thailand)

Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Assistant Professor Dr Thirayost Nimmanon

MD, FRCPath (Thailand), MRes, PhD

Phramongkutklao College of Medicine, Bangkok, Thailand

Assistant Professor Dr Wisarn Worasuwannarak

MD, FRCPath (Thailand)

Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Dr Anirut Worawat

MD, FRCPath (Thailand)

Siriraj Hospital, Mahidol University, Bangkok, Thailand

Dr Panuwat Chutivongse

MD, FRCPath (Thailand)

Chulalongkorn University, Bangkok, Thailand

Editorial Consultant

Professor Dr Vorachai Sirikulchayanonta

MD, FRCPath (Thailand)

Rangsit University, Pathumtani, Thailand

i

Aims and Scope

Asian Archives of Pathology (AAP) is an open access, peer-reviewed journal. The journal was first published in 2002 under the Thai name "วารสารราชวิทยาลัยพยาธิแพทย์แห่งประเทศไทย" and English name "Journal of the Royal College of Pathologists of Thailand". The journal is a publication for workers in all disciplines of pathology and forensic medicine. In the first 3 years (volumes), the journal was published every 4 months. Until 2005, the journal has changed its name to be "Asian Archives of Pathology: The Official Journal of the Royal College of Pathologists of Thailand", published quarterly to expand the collaboration among people in the fields of pathology and forensic medicine in the Asia-Pacific regions and the Western countries.

The full articles of the journal are appeared in either Thai or English. However, the abstracts of all Thai articles are published in both Thai and English languages. The journal features letters to the editor, original articles, review articles, case reports, case illustrations, and technical notes. Diagnostic and research areas covered consist of (1) Anatomical Pathology (including cellular pathology, cytopathology, haematopathology, histopathology, immunopathology, and surgical pathology); (2) Clinical Pathology (Laboratory Medicine) [including blood banking and transfusion medicine, clinical chemistry (chemical pathology or clinical biochemistry), clinical immunology, clinical microbiology, clinical toxicology, cytogenetics, parasitology, and point-of-care testing]; (3) Forensic Medicine (Legal Medicine or Medical Jurisprudence) (including forensic science and forensic pathology); (4) Molecular Medicine (including molecular genetics, molecular oncology, and molecular pathology); (5) Pathobiology; and (6) Pathophysiology.

All issues of our journal have been printed in hard copy since the beginning. Around the late 2014, we developed our website (www.asianarchpath.com) in order to increase our visibility. We would like to acknowledge that our journal has been sponsored by the Royal College of Pathologists of Thailand. We have the policy to disseminate the verified scientific knowledge to the public on a non-profit basis. Hence, we have not charged the authors whose manuscripts have been submitted or accepted for publication in our journal.

On the other hand, if any authors request a printed copy of the journal issue containing the articles, each of the copied journals costs 450 bahts for Thai authors and 30 United States dollars (USD) for international authors.

Publication Frequency

Four issues per year

Disclaimer

The Royal College of Pathologists of Thailand and Editorial Board cannot be held responsible for errors or any consequences arising from the use of information contained in Asian Archives of Pathology. It should also be noted that the views and opinions expressed in this journal do not necessarily reflect those of The Royal College of Pathologists of Thailand and Editorial Board.

MANUSCRIPT REVIEWERS

Professor Dr Aileen Wee

MBBS, FRCPath, FRCPA

National University Hospital, Singapore

Professor Dr Eiichi Morii

MD, PhD

Osaka University Hospital, Osaka, Japan

Professor Dr Jasvir Khurana

MBBS, FCAP

Temple University, Lewis Katz School of Medicine, Pennsylvania, The United States of America

Professor Dr Paisit Paueksakon

MD, FRCPath (Thailand), FCAP

Vanderbilt University School of Medicine, Tennessee, The United States of America

Professor Dr Nidhi Chongchitnant

MD, FRCPath (Thailand)

Bangkok Hospital, Bangkok, Thailand

Professor Dr Vorachai Sirikulchayanonta

MD, FRCPath (Thailand)

Rangsit University, Pathumtani, Thailand

Professor Dr Oytip Na-thalang

PhD

Thammasat University Rangsit Campus, Pathumtani, Thailand

Associate Professor Dr Phaibul Punyarit

MD, FCAP, FRCPath (Thailand)

Bumrungrad International Hospital, Bangkok, Thailand

Assistant Professor Dr Yingluck Visessiri

MD, FRCPath (Thailand)

Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

Assistant Professor Dr Pasra Arnutti

PhD

Phramongkutklao College of Medicine, Bangkok, Thailand

Dr Jutatip Kintarak

MD, FRCPath (Thailand)

Thammasat University Rangsit Campus, Pathumtani, Thailand

Dr Kantang Satayasoontorn

MD, FRCPath (Thailand)

Army Institute of Pathology, Bangkok, Thailand

Dr Mongkon Charoenpitakchai

MD, FRCPath (Thailand)

Phramongkutklao College of Medicine, Bangkok, Thailand

■ Dr Sivinee Charoenthammaraksa

MD, FRCPath (Thailand)

Bumrungrad International Hospital, Bangkok, Thailand

Dr Sorranart Muangsomboon

MD, FRCPath (Thailand)

Siriraj Hospital, Mahidol University, Bangkok, Thailand

CONTENTS

About the journal	i
Aims and scope	i
Publication frequency	i
Disclaimer	ii
Manuscript reviewers	iii
Original Article	1
 Assessment of the usefulness of the knowledge of pathology for clinical medical students – a multicentre study 	1
Ijeoma Angela Meka, Helen Chioma Okoye, Angela Ogechukwu Ugwu, Isah Adagiri Yahaya, Ochukor Otokunefor, Olugbenga Olalekan Ojo, and Emmanuel Onyebuchi Ugwu	
Review Article	13
■ The essentials of vascular pathology	13
Chetana Ruangpratheep	
Case Report	34
Heart transplant for multiple recurrences of familial cardiac	34
myxomas in an adolescent patient: a case report and	
literature review	
Thiyaphat Laohawetwanit, Poonchavist Chantranuwatana, and Pat Ongcharit	
Appendix 1: Information for authors	45
Categories of manuscripts	46
Organisation of manuscripts	48
Proofreading	54
Revised manuscripts	54
Appendix 2: Benefits of publishing with Asian Archives of Pathology	55
Appendix 3: Submission of the manuscripts	56
Appendix 4: Contact the journal	57
Appendix 5: Support the journal	58

ORIGINAL ARTICLE

Assessment of the usefulness of the knowledge of pathology for clinical medical students – a multicentre study

Ijeoma Angela Meka^{1*}, Helen Chioma Okoye², Angela Ogechukwu Ugwu², Isah Adagiri Yahaya³, Ochukor Otokunefor⁴, Olugbenga Olalekan Ojo⁵, and Emmanuel Onyebuchi Ugwu⁶

Ituku-Ozalla Campus, Enugu, Nigeria

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

^{*} Correspondence to: Ijeoma Angela Meka, Department of Chemical Pathology, College of Medicine, University of Nigeria, Ituku-Ozalla Campus, Enugu, Nigeria. PO Box 15514, UNEC Post Office Enugu, Nigeria. Telephone: (+234) 703 096 7673 Email: ijeamaka20@gmail.com, ijeoma.meka@unn.edu.ng

Abstract

Pathology courses are taught to undergraduate medical students to provide them with basic foundation for clinical sciences. However, there is hardly any form of assessment of how relevant and helpful these pathology courses are to the students in the clinical years and even beyond. The authors set out to determine the extent of use of the knowledge of pathology in students' appreciation of clinical medicine. The study involved final year medical students recruited from four accredited medical schools in Nigeria. Data was obtained using self-administered semi-structured questionnaires. A total of 310 final year medical students with mean (standard deviation) age of 22.5 (3.8) years participated in the study. Most useful pathology courses versus clinical courses for respondents were: 155 (50.0%) Morbid Anatomy and Haematology vs Obstetrics and Gynaecology; 181 (58.4%) Haematology vs Paediatrics; 239 (77.1%) Morbid Anatomy vs Surgery; and 246 (79.4%) Haematology vs Medicine. The proportion of respondents who indicated interest to pursue a career in pathology was 83 (26.8%). Pathology remains relevant and very useful for students' understanding of clinical courses. However, further work needs to be done to elucidate steps required to attract the younger generation into this branch of medicine.

Keywords: clinical; haematology; medical students; morbid anatomy; pathology

Introduction

Pathology may be defined as the science of the causes and effects of diseases, especially the branch of medicine that deals with the laboratory examination of samples of body tissue for diagnostic or forensic purposes⁽¹⁾. It also refers to the study of abnormal anatomy, biochemistry, and physiology at gross (organ), tissue, cellular, biochemical, and molecular levels; for the purpose of diagnosis and management of diseases.

A good knowledge of pathology is essential to effective clinical practice. It is a medical specialty which deals with pathological processes underlying disease processes. In many medical schools, it is incorporated into the undergraduate medical school curriculum in the third or fourth year. Pathology generally has four arms/branches which are Chemical/Clinical Pathology, Haematology, Morbid Anatomy, and Medical Microbiology. Medical students are trained in these four areas while studying pathology as a basic and compulsory requirement for proceeding to the clinical courses. It thus serves as a first introduction to human disease processes in the undergraduate years.

<u>Chemical Pathology</u>: This is also known as Clinical Chemistry, Clinical Pathology or Clinical Biochemistry. This branch of pathology deals with biochemically investigating bodily fluids such as blood, urine, saliva, pleural fluid, ascetic fluid, and cerebrospinal fluid⁽²⁾. It is the study of the biochemical basis of diseases, and the application of biochemical and molecular techniques in diagnosis. The purpose of Chemical Pathology is the understanding of the biochemical derangements due to disease processes. The ultimate target is to ensure that physicians make use of Chemical Pathology investigations in a cost effective manner by rational test selection and thoughtful interpretation.

<u>Haematology</u>: This is the branch of medical science concerned with diseases of the blood and blood-forming tissues⁽³⁾. It deals with current and evolving knowledge of the pathogenesis, clinical and laboratory features, management and treatment of a wide range of blood and bone marrow disorders.

<u>Morbid Anatomy</u>: This is also known as Anatomic or Anatomical Pathology. This medical specialty is concerned with the diagnosis of disease based on morphology of cells and tissues, the macroscopic and microscopic examination of organs and tissues⁽⁴⁾. The procedures used in Anatomic Pathology include gross and microscopic examination, immunohistochemistry, cytopathology, tissue cytogenetic, and in situ hybridisation among others.

<u>Medical Microbiology</u>: This arm of pathology works to support and oversee the prevention, diagnosis and treatment of illness caused by microorganisms (viruses, fungi, and parasites). Medical microbiologists strive to identify the best treatment for particular infectious diseases and give advice on the best samples to collect and also the technique of the sample collection to diagnose an infection, such as a swab, blood, cerebrospinal fluid or urine test⁽⁵⁾. Medical Microbiology is also strongly integrated in the study and identification of strategies to combating antimicrobial resistance.

Evaluation of students' perception in the use of pathology is essential to ascertain their knowledge and understanding of the information passed in the course of pathology teaching. There is indeed a dearth of data in Nigeria regarding this subject. It is important to know if students have acquired adequate knowledge to help them in their clinical courses and how effective the knowledge gained is in aiding understanding of clinical courses.

In line with this evaluation, a study⁽⁶⁾ in the United Kingdom has reported that the majority, 47 (67%) trainees in their study felt that their undergraduate courses had not prepared them for their membership exams, and that they were disadvantaged in having to learn pathology from first principles rather than build on the basics they hoped to know already.

In terms of career choices among medical students, previous studies⁽⁷⁻¹⁰⁾ both within and outside Nigeria, have documented low preferences of pathology as a career when compared with other sub-specialties. However, there is yet to be a description of the students' choices among the various components of pathology.

This study therefore aims to explore the extent of the use of the knowledge of pathology by medical students in their clinical years, and go further to characterise the pattern of students' career choices among the various components of pathology. This will help to provide much needed data and fill the currently existing gap in literature on this topic, especially in Nigeria.

Materials and Methods

Study location:

This comparative cross-sectional study was carried out in four accredited Nigerian Universities namely, University of Nigeria (UNN), University of Lagos (UNILAG), University of Port Harcourt (UNIPORT), and Bayero University, Kano (BUK) between March and October, 2018. These universities were selected to represent four major regions of Nigeria thus; University of Nigeria, Nsukka represented the South-East region; University of Port Harcourt represented the South-South region; University of Lagos represented the South-West; and Bayero University, Kano represented the Northern region.

Study design:

Participants were recruited from the final year medical students of the participating universities who had been exposed to all aspects of clinical medicine. Data was collected using pretested self-administered semi-structured questionnaires. The questionnaire used was designed by the researchers. Participants completed the questionnaires after the purpose of the study was explained to them and confidentiality of data assured. The questionnaires were pretested using ten students, and then assessed for completeness of data, ease of filling the questionnaires, clarity of questions and appropriate response options. The final draft of the questionnaires used for data collection assessed socio-demographic characteristics like age,

sex, institution and class of study. Seven questions were used to assess use of knowledge of pathology while two questions assessed possibility of pursuing a career in pathology.

Inclusion criteria:

Consenting final year medical students from aforementioned universities.

Exclusion criteria:

Non-medical students, non-final year medical students, students not from the aforementioned universities, and individuals who declined consent.

Ethical considerations:

Informed consent was obtained from participants and ethical clearance obtained from University of Nigeria College of Medicine Research Ethics Committee.

Statistical Analysis:

This was done using SPSS version 20. Continuous variables were presented as mean, standard deviation (SD), number and percentages while categorical variables were presented in frequency tables as counts (number) and percentages. The Chi Square (χ^2) test of statistical significance was used to determine the relationship of age, sex, institutions, and career interest in pathology. All p-values were bidirectional, and a p-value < 0.05 was considered statistically significant.

Results

A total of 310 final year medical students participated in the survey giving a response rate of 74.2%. The age range among participants was 20 - 38 years with mean [standard deviation (SD)] of 22.5 (3.8) years. There was a slight male sex preponderance with a male (M) to female (F) ratio of 1.4 to 1, with males making up 58.7% of respondents. Majority were in the 20 - 25 years age group as shown in *Table 1*. Distribution of respondents according to institutions is as shown in *Figure 1*. All respondents were in the final year of study and have gone through all clinical postings.

Table 1 Age and sex distribution of 310 respondents.

Categ	ory	Number of respondents			
	Male	182 (58.7%)			
Sex	Female	128 (41.3%)			
Age group (Years)	20 – 25	222 (71.6%)			
	26 – 30	80 (25.8%)			
	> 30	8 (2.6%)			

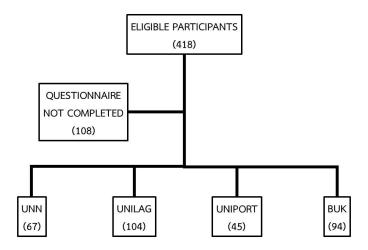


Figure 1 Distribution of respondents according to institutions (UNN = University of Nigeria; UNILAG = University of Lagos; UNIPORT = University of Port Harcourt; and BUK = Bayero University, Kano).

Of the 4 Pathology Departments, majority 273 (88.1%) stated that they enjoyed Haematology courses most. In responding to how often they encounter pathology in clinical courses, majority 251 (81.0%) indicated encountering Morbid Anatomy most often. Most respondents 224 (72.3%) revised Haematology after leaving pathology class. These are outlined in *Table 2*.

Table 2 Assessment of 310 respondents on pathology courses.

	Number of respondents							
Variable	Haematology		Chemical Pathology		Microbiology		Morbid Anatomy	
	Yes	No	Yes	No	Yes	No	Yes	No
Courses aid	272	38	256	54	256	54	272	38
understanding of	(87.7%)	(12.3%)	(82.6%)	(17.4%)	(82.6%)	(17.4%)	(87.7%)	(12.3%)
clinical courses?								
How respondents	273	37	220	90	196	114	220	90
enjoyed pathology	(88.1%)	(11.9%)	(71.0%)	(29.0%)	(63.2%)	(36.8%)	(71.0%)	(29.0%)
courses?								
Pathology courses	243	67	242	68	243	67	251	59
encountered most	(78.4%)	(21.6%)	(78.1%)	(21.9%)	(78.4%)	(21.6%)	(81.0%)	(19.0%)
often in clinical								
courses.								
Revised pathology	224	86	206	104	200	110	219	91
lectures after classes?	(72.3%)	(27.7%)	(66.5%)	(33.5%)	(64.5%)	(35.5%)	(70.6%)	(29.4%)

Most respondents 304 (98.1%) affirmed that pathology courses were useful to them beyond pathology class. Most useful pathology courses versus clinical courses for respondents were: 155 (50.0 %) Morbid Anatomy and Haematology vs Obstetrics and Gynaecology; 181 (58.4%) Haematology vs Paediatrics; 239 (77.1%) Morbid Anatomy vs Surgery; and 246 (79.4%) Haematology vs Medicine as depicted in *Table 3*. When asked the course they would concentrate on if they were to re-learn pathology, most 272 (87.7%) indicated Haematology and Morbid Anatomy, as shown in *Table 4*.

Table 3 Response of 310 participants to the most useful pathology courses in clinical classes.

The most useful	Number of participants							
pathology course	Obstetrics & Gynaecology		Paediatrics		Medicine		Surgery	
in clinical classes	Yes	No	Yes	No	Yes	No	Yes	No
Haematology	155	155	181	129	246	64	182	128
	(50.0%)	(50.0%)	(58.4%)	(41.6%)	(79.4%)	(20.6%)	(58.7%)	(41.3%)
Chemical Pathology	119	191	166	144	236	74	161	149
	(38.4%)	(61.6%)	(53.5%)	(46.5%)	(76.1%)	(23.8%)	(51.9%)	(48.1%)
Microbiology	140	170	156	154	233	77	170	140
	(45.2%)	(54.8%)	(50.3%)	(49.7%)	(75.2%)	(24.8%)	(54.8%)	(45.2%)
Morbid Anatomy	155	155	145	165	212	98	239	71
	(50.0%)	(50.0%)	(46.8%)	(53.2%)	(68.4%)	(31.6%)	(77.1%)	(22.9%)

Table 4 Area of concentration in event of re-learning pathology courses of 310 respondents.

De les mises methodom con more	Number of respondents			
Re-learning pathology courses	Yes	No		
Haematology	272	38		
	(87.7%)	(12.3%)		
Chemical Pathology	255	55		
	(82.3%)	(17.7%)		
Microbiology	256	54		
	(82.6%)	(17.4%)		
Morbid Anatomy	272	38		
	(87.7%)	(12.3%)		

The proportion of respondents who indicated interest to pursue a career in pathology was 83 (26.8 %), out of which 35 (42.2%) opted for Haematology. This is shown in *Figure 2*. The response to pursue a career in pathology is highest among those in the age group 20 – 25 years (53.0%), while it is lowest among respondents above age of 30 years (4.8%). The differences observed in the age groups was statistically significant ($\chi^2 = 22.754$, p < 0.001). Those who indicated interest to pursue a career in pathology courses were higher among males (57.8%), compared to females (42.2%), but the differences observed were not statistically significant ($\chi^2 = 0.404$, p = 0.817). Differences observed among institutions were statistically significant ($\chi^2 = 39.310$, p < 0.001) as depicted in *Table 5*.

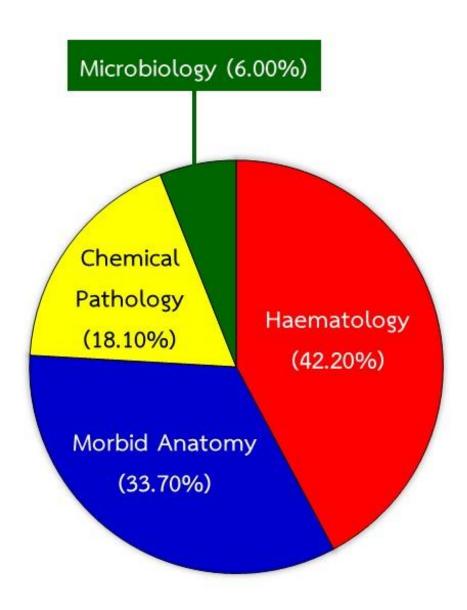


Figure 2 Potential career choices of respondents according to departments.

Table 5 Relationship of age, sex, institutions and career interest in pathology of 310 respondents.

		Number	of responde			
Varia	ble	career	interest in p	X ²	<i>p</i> -value	
		Yes	No	Not sure		
Age	20 – 25	44	97	81		
(Years)		(53.0%)	(81.5%)	(76.42%)		
	26 – 30	35	21	24		
		(42.2%)	(17.6%)	(22.64%)	22.754	< 0.001
	> 30	4	1	1	22.134	< 0.001
		(4.8%)	(0.9%)	(0.94%)		
	Total	83	119	106		
		(100%)	(100%)	(100%)		
Sex	Male	48	68	66		
		(57.8%)	(57.1%)	(61.1%)		
	Female	35	51	42	0.404	0.817
		(42.2%)	(42.9%)	(38.9%)	0.404	0.017
	Total	83	119	108		
		(100%)	(100%)	(100%)		
Institution	UNN	13	25	29		
		(15.7%)	(21.0%)	(26.8%)		
	UNILAG	13	59	32		
		(15.7%)	(49.6%)	(29.6%)	39.310	
	BUK	35	25	34		< 0.001
		(42.2%)	(21.0%)	(31.5%)		\ \ 0.001
	UNIPORT	22	10	13		
		(26.4%)	(8.4%)	(12.1%)		
	Total	83	119	108		
		(100%)	(100%)	(100%)		

Note: UNN = University of Nigeria; UNILAG = University of Lagos; UNIPORT = University of Port Harcourt; and BUK = Bayero University, Kano

Discussions

In the present study, there was a slight male preponderance among respondents. This is in agreement with other studies⁽⁹⁻¹¹⁾ carried out among medical students in Nigeria, and America⁽¹²⁾ till 2017 when the trend changed in America with female medical students enrollees being more than their male conterparts⁽¹³⁾. This is not surprising as medicine has long been a male-dominated profession.

The mean age of 22.5 years in this study is lower than the 25.5 years reported by Ossai et al $^{(9)}$ in South-East Nigeria. The present study included participants from four geopolitical zones in Nigeria whereas the study by Ossai et al $^{(9)}$ focused only on one geopolitical zone (South-East Nigeria), and this may account for the difference.

The proportion of respondents who enjoyed Morbid Anatomy was 220 (71.0%). This contrasts with 65.5%⁽¹⁴⁾ and 64.3%⁽¹⁵⁾ of participants reported in two different studies who found Morbid Anatomy interesting. The course mostly enjoyed by participants was Haematology and this probably might have influenced their career choices as majority of those who indicated interest to pursue a career in pathology chose Haematology. This is equally a good feedback for the lecturers in Haematology as it seems that their positive influence may have translated into stimulation of career interest in students. Another explanation to this may be that out of the four arms of pathology, Haematology is mostly involved in direct patient-care as it often has the highest patient load when compared with Chemical Pathology and Microbiology which are also involved in direct patient-care. As medical students often view medical practice as basically direct patient-care, their career choices are usually influenced along that line.

Most respondents encountered Morbid Anatomy most often in their clinical courses. But interestingly, this did not translate to respondents revising their Morbid Anatomy courses after pathology classes. While 251 (81.0%) admitted to encountering Morbid Anatomy most often in clinical courses, and 272 (87.7%) indicated they would focus on Morbid Anatomy if they are to re-learn pathology, only 219 (70.6%) revised the course during the clinical years. Though the reason behind this is not clear but it may be attributed to the level of interest in the course as the proportion of those who revised (70.6%) agrees with that of those who enjoyed the course (71.0%). This should then encourage lecturers in the field of Morbid Anatomy to search for ways of stimulating interest in students in order to further help them in appreciating clinical courses.

The proportion of respondents who indicated interest to pursue a career in pathology is higher than 2.0% recorded by Ossai et al⁽⁹⁾ in 2016. This could mean a renewed interest in pathology as a career choice among medical students. Again, the wider coverage of the current study might account for the difference. A statistically significant greater proportion of respondents from BUK indicated interest in pursuing a career in pathology. This is

commendable on the part of pathology lecturers in BUK for stimulating their students' interest as pathology has long been a specialty with low students' career preference.

Though there is a dearth of data on this topic but among the four arms of pathology, Morbid Anatomy has been the most widely studied in terms of students' career choices. The reason for this is not clear but this observation might encourage researchers in the other arms of pathology to carry out more research in their respective specialties. In the current study, 33.7% of participants indicated interest to pursue a career in Morbid anatomy. This is higher than $12.7\%^{(14)}$ and $21.3\%^{(15)}$ recorded by previous researchers in Nigeria. The study by Vhriterhire et al was done in two institutions in the same geopolitical zone of Nigeria while the study by Ojo et al was carried out in a single institution, and these could account for the differences seen. However, the higher proportion of participants who enjoyed Morbid Anatomy as a course and those who indicated career interest in Morbid Anatomy in the current study is a positive picture which may depict renewed interest among students in Morbid Anatomy. Most respondents indicated they would concentrate on Haematology and Morbid Anatomy if they were to re-learn Pathology (Table 4). This could be explained by the observation that both courses were the most cited in responding to the question on the most useful pathology courses versus clinical courses (Table 3). The observations captured in Tables 3 and 4 give great insight to how much pathology courses aid students in appreciation of clinical courses, hence this study calls for more emphasis to be placed on the teaching and learning of pathology by both lecturers and students.

Conclusions

The study of pathology remains very fundamental in medical education. However this study portrays the rubrics of the relationship between pathology and clinical courses in terms of students' perception and use of knowledge gained in clinical years. Again, though previous studies have demonstrated low interest in pathology as a career choice but this study goes further to characterise medical students' pattern of career choices between the four arms of pathology.

Strengths and Limitations of Study

It would have been interesting to know the factors influencing the career choices of the respondents. However, despite these limitations, the major strength of this study is the multicentre representation of four major geopolitical zones in Nigeria.

References

- (1). English Oxford Living dictionaries https://en.oxforddictionaries.com/definition/pathology assessed on 9/8/2018.
- (2). Royal College of Pathologists https://www.rcpath.org/discover-pathology/news/fact-sheets/what-is-chemical-pathology-.html assessed on 9/8/2018.
- (3). Collins English dictionary https://www.collinsdictionary.com/dictionary/english/haematology assessed on 9/8/2018.
- (4). Anatomic Pathology https://www.humpath.com/spip.php?article21281 assessed on 9/8/2018.
- (5). Royal College of Pathologists https://www.rcpath.org/discover-pathology/careers-in-pathology/careers-in-medicine/become-a-microbiologist.html assessed on 6/7/2018.
- (6). Marsdin E and Biswas S. Are we learning enough pathology in medical school to prepare us for postgraduate training and examinations? Journal of Biomedical Education 2013, Article ID 165691, 3 pages.
- (7). Hung T, Jarvis-Selinger S, Ford JC. Residency choices by graduating medical students: why not pathology? Hum Pathol 2011;42:802-807.
- (8). Newton DA, Grayson MS. Trends in career choice by US medical school graduates. JAMA 2003;290:1179-1182.
- (9). Ossai EN, Uwakwe KA, Anyanwagu UC, Ibiok NC, Azuogu BN, Ekeke N. Specialty preferences among final year medical students in medical schools of southeast Nigeria: need for career guidance. BMC Medical Education. 2016;16:259.
- (10). Asani M O, Gwarzo G D, Gambo M J. Preference of specialty choices among final year medical students of Bayero University Kano. Sahel Med J 2016;19:155-8.
- (11). Oku OO, Oku AO, Edentekhe T, Kalu Q, Edem BE. Specialty choices among graduating medical students in University of Calabar, Nigeria: implications for anesthesia practice. Ain-Shams J Anaesthesiol 2014;7:485-90.
- (12). Sanfey HA, Saalwachter-Schulman AR, Nyhof-Young JM, Eidelson B, Mann BD. Influences on medical student career choice: gender or generation? Arch Surg. 2006 Nov; 141(11):1086-94.
- (13). Association of American Medical Colleges. More women than men enrolled in U.S. medical schools in 2017. Available at https://news.aamc.org/press-releases/article/applicant-enrollment-2017/ assessed on 9/12/2018.
- (14). Vhriterhire RA, Orkuma JA, Jegede OO, Omotosho AJ, Adekwu A. Technology-enhanced pathology education: Nigerian medical students perspectives. Journal of Education and Practice. 2016;7(35):103-108.
- (15). Ojo BA, Abdulkareem IS, Izegbu MC. The choice of morbid anatomy as a career by medical undergraduates in a developing country. NQJHM 2005;15(2):64-66.

REVIEW ARTICLE

The essentials of vascular pathology

Chetana Ruangpratheep

Department of Pathology, Floor 6, Her Royal Highness Princess Bejaratana Building, Phramongkutklao College of Medicine, 315 Rajavithi Road, Rajadevi, Bangkok 10400 Thailand Telephone: +66 (0) 90 132 2047 Fax: +66 (0) 2 354 7791 Email: chetana.rua@pcm.ac.th

Abstract

Vascular pathology is defined as the abnormalities of the arterial and venous blood vessels and the lymphatic vessels. Endothelial cell injury usually leads to the development of either arterial or venous change. The lymphatic diseases mostly result from inflammation, infection, and neoplasm.

Keywords: endothelial cell injury; lymphatic diseases; vascular pathology

สาระสำคัญเกี่ยวกับพยาธิวิทยาของหลอดเลือด

เจตนา เรื่องประที่ป

ภาควิชาพยาธิวิทยา ชั้น 6 อาคารเจ้าฟ้าเพชรรัตน วิทยาลัยแพทยศาสตร์พระมงกุฎเกล้า เลขที่ 315 ถนนราชวิถี แขวงทุ่งพญาไท เขตราชเทวี จังหวัดกรุงเทพมหานคร รหัสไปรษณีย์ 10400 โทรศัพท์: +66 (0) 90 132 2047 โทรสาร: +66 (0) 2 354 7791 Email: chetana.rua@pcm.ac.th

บทคัดย่อ

พยาธิวิทยาของหลอดเลือดหมายถึงความผิดปกติของหลอดเลือดแดง หลอดเลือดดำ และหลอด น้ำเหลือง โดยปกติการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดจะนำไปสู่การเปลี่ยนแปลงได้ทั้งของ หลอดเลือดแดงและหลอดเลือดดำ สำหรับโรคของหลอดน้ำเหลืองมักเป็นผลจากการอักเสบ การติดเชื้อ และ เนื้องอก

คำสำคัญ: การบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือด; โรคของหลอดน้ำเหลือง; พยาธิวิทยาของหลอด เลือด โดยปกติแล้วระบบหมุนเวียนโลหิต [Circulatory (Vascular) system] ประกอบด้วยระบบหลอดเลือด (Blood vascular system) และระบบหลอดน้ำเหลือง (Lymphatic vascular system) แม้กระนั้นก็ตาม คำว่า "Vascular system" มักจะเป็นที่เข้าใจกันโดยทั่วว่าหมายถึงระบบหลอดเลือดเป็นหลัก สำหรับเนื้อหา ของพยาธิวิทยาของระบบหลอดเลือด (Pathology of the vascular system) ที่ปรากฏในบทความนี้จะเป็น การอธิบายถึงภาวะและความผิดปกติที่พบบ่อยของทั้งระบบหลอดเลือดและหลอดน้ำเหลือง ดังต่อไปนี้

- 1. ภาวะและ/หรือความผิดปกติที่เกี่ยวข้องกับหลอดเลือดแดง (Arterial blood vessels)
 - 1.1. ภาวะหลอดเลือดแดงแข็ง (Arteriosclerosis)
 - 1.1.1. ภาวะหลอดเลือดแดงแข็งเนื่องจากความดันโลหิตสูง (Hypertensive arteriosclerosis)
 - 1.1.1.1. Hyaline arteriolosclerosis
 - 1.1.1.2. Hyperplastic arteriolosclerosis
 - 1.1.2. Atherosclerosis
 - 1.1.3. Mönckeberg's medial calcific sclerosis
 - 1.2. ภาวะหลอดเลือดโป่งพอง (Aneurysm)
 - 1.3. การเซาะแยกของผนังหลอดเลือดแดงใหญ่ (Aortic Dissection)
 - 1.4. การอักเสบของหลอดเลือดแดงใหญ่เนื่องจากโรคซิฟิลิส (Syphilitic Aortitis)
 - 1.5. การอักเสบของหลอดเลือด (Vasculitis)
- 2. ภาวะและ/หรือความผิดปกติที่เกี่ยวข้องกับหลอดเลือดดำ (Venous blood vessels)
 - 2.1. ภาวะหลอดเลือดขอดที่ขา (Varicose Veins)
 - 2.2. ภาวะลิ่มเลือดอุดหลอดเลือดดำส่วนลึกที่ขา [Deep Vein Thrombosis (DVT)]
 - 2.3. ภาวะลิ่มเลือดอุดหลอดเลือดแดงที่เข้าสู่ปอด (Pulmonary Thromboembolism)
- 3. เนื้องอกของหลอดเลือด (Vascular tumours)
 - 3.1. เนื้องอกแบบธรรมดาของหลอดเลือด (Benign vascular tumours)
 - 3.1.1. Capillary haemangioma
 - 3.1.2. Cavernous haemangioma
 - 3.1.3. Glomangioma (Glomus tumour)
 - 3.2. มะเร็งหลอดเลือด (Malignant vascular tumours)
 - 3.2.1. Kaposi's sarcoma
 - 3.2.2. Angiosarcoma
- 4. ภาวะและ/หรือความผิดปกติของหลอดน้ำเหลือง (Lymphatic vessels)
 - 4.1. การอักเสบของหลอดน้ำเหลือง (Lymphangitis)
 - 4.2. ภาวะบวมน้ำเหลือง (Lymphoedema)
 - 4.3. เนื้องอกแบบธรรมดาของหลอดน้ำเหลือง (Lymphangioma)

1. ภาวะและ/หรือความผิดปกติที่เกี่ยวข้องกับหลอดเลือดแดง (Arterial blood vessels)

1.1. ภาวะหลอดเลือดแดงแข็ง (Arteriosclerosis)

Arteriosclerosis หมายถึง ภาวะที่ผนังของหลอดเลือดแดงเกิดการหนาตัวและมีลักษณะ แข็งมากขึ้น ได้แก่ ภาวะหลอดเลือดแดงแข็งเนื่องจากความดันโลหิตสูง (Hypertensive arteriosclerosis) ภาวะหลอดเลือดแดงแข็งเนื่องจาก Atherosclerosis และภาวะหลอดเลือดแดง แข็งเนื่องจาก Mönckeberg's medial calcific sclerosis (3-5)

1.1.1. ภาวะหลอดเลือดแดงแข็งเนื่องจากความดันโลหิตสูง (Hypertensive arteriosclerosis)

ในปี พ.ศ. 2560 (ค.ศ. 2017) วิทยาลัยแพทย์โรคหัวใจแห่งสหรัฐอเมริกา (American College of Cardiology) และสมาคมโรคหัวใจแห่งสหรัฐอเมริกา (American Heart Association) ได้กำหนดเกณฑ์ใหม่สำหรับความดันโลหิตสูง (Hypertension) ในผู้ใหญ่ คือ เมื่อทำการวัดความดันโลหิต [Blood pressure (BP)] อย่างน้อย 2 ครั้งแล้วพบว่า มีค่าเฉลี่ยของความดันโลหิตซิสโตลิก [Systolic blood pressure (SBP)] ตั้งแต่ 130 มิลลิเมตรปรอท (mmHg) เป็นต้นไป หรือ มีค่าเฉลี่ยของความดันโลหิตไดแอสโตลิก [Diastolic blood pressure (DBP)] มากกว่าหรือเท่ากับ 80 mmHg⁽⁶⁾

ความดันโลหิตเป็นผลจากปริมาตรเลือดที่ส่งออกจากหัวใจต่อนาที (Cardiac output) และ แรงต้านทานของหลอดเลือดส่วนปลาย (Peripheral vascular resistance) ทั้งนี้การเปลี่ยนแปลงของปริมาตรเลือดที่ส่งออกจากหัวใจต่อนาที (Cardiac output) มีความเกี่ยวข้องกับ (ก) ปริมาณของเกลือโซเดียมที่ร่างกายได้รับและขับออก และ (ข) การทำงานของระบบเรนิน-แองจิโอเทนซิน-อัลโดสเตอโรน [Renin-Angiotensin-Aldosterone system (RAAS)] จากปอด ไต และต่อมหมวกไตส่วนนอก (Adrenal cortex) สำหรับแรงต้านทานของหลอดเลือดส่วนปลาย (Peripheral vascular resistance) จะถูกเปลี่ยนแปลงได้ด้วย (ก) การทำงานของระบบประสาท และ (ข) การทำงานของฮอร์โมน (Hormones) ที่หลั่งจากระบบต่อมไร้ท่อ (Endocrine system)⁽³⁾

ความดันโลหิตสูงแบ่งออกเป็น 2 ประเภท คือ ความดันโลหิตสูงชนิดปฐมภูมิ [Primary (Essential or Idiopathic) hypertension] และ ความดันโลหิตสูงชนิด ทุติยภูมิ (Secondary hypertension)^(3,4,7,8)

ก. ความดันโลหิตสูงชนิดปฐมภูมิ [Primary (Essential or Idiopathic) hypertension]

ร้อยละ 90 ของผู้ป่วยที่ได้รับการวินิจฉัยว่ามีความดันโลหิตสูงจะเป็นชนิดปฐม ภูมิ ซึ่งสาเหตุของการเกิดความดันโลหิตสูงชนิดปฐมภูมินี้ยังไม่ทราบแน่ชัด แต่อาจเกิด จากปัจจัยที่หลากหลายดังต่อไปนี้⁽⁴⁾

- การถ่ายทอดทางกรรมพันธุ์
- การทำงานที่มากเกินไปของระบบประสาทซิมพาเทติก (Sympathetic nervous system)
- ความผิดปกติในการขนส่งประจุโซเดียมและประจุโพแทสเซียมผ่านเยื่อหุ้ม เซลล์ (Na⁺/K⁺ membrane transport)

- การบริโภคอาหารที่มีความเค็มสูงอยู่เป็นประจำ
- ความผิดปกติของระบบ RAAS

ข. ความดันโลหิตสูงชนิดทุติยภูมิ (Secondary hypertension)

ความดันโลหิตสูงชนิดทุติยภูมิ หมายถึง การที่ร่างกายมีความดันโลหิตสูง เนื่องจากภาวะ/โรคต่างๆ เนื้องอกของต่อมไร้ท่อ หรือการได้รับยาบางชนิดอย่าง ต่อเนื่องเป็นเวลานาน ซึ่งสาเหตุของความดันโลหิตสูงชนิดทุติยภูมิได้แก่ (4,7-9)

- ภาวะความดันในกะโหลกศีรษะสูง (Increased intracranial pressure)
- ความผิดปกติในการทำงานของต่อมไทรอยด์ (Thyroid gland) ต่อมพารา ไทรอยด์ (Parathyroid gland) หรือต่อมหมวกไตส่วนนอก
- การตีบแคบที่บริเวณส่วนโค้งของหลอดเลือดแดงใหญ่ (Coarctation of aorta)
- ความผิดปกติของเนื้อไต (Renal parenchyma) หรือหลอดเลือดแดงของ ไต (Renal arteries) ทั้งนี้การตีบของหลอดเลือดแดงที่ไต (Renal artery stenosis) เป็นสาเหตุที่พบได้บ่อยของการเกิดความดันโลหิตสูงในผู้ที่อายุ น้อยกว่า 20 ปีหรือมากกว่า 50 ปี
- เนื้องอกของต่อมใต้สมอง (Pituitary gland) ต่อมหมวกไตส่วนนอก หรือ ต่อมหมวกไตส่วนใน (Adrenal medulla)
- การตั้งครรภ์
- การเกิดความเครียดอย่างเฉียบพลัน (Acute stress) ของร่างกายหรือจิตใจ
- การรับประทานยาคุมกำเนิดหรือยากลุ่มคอร์ติโคสเตียรอยด์
 (Corticosteroids) เป็นระยะเวลานาน

เมื่อเกิดความดันโลหิตสูงอย่างเรื้อรัง (Chronic hypertension) จะก่อให้เกิดพยาธิ สภาพของเนื้อเยื่อ/อวัยวะต่างๆ ดังนี้คือ⁽⁷⁾

- เซลล์กล้ามเนื้อหัวใจห้องล่างด้านซ้ายมีขนาดใหญ่ขึ้น จึงทำให้ผนังหัวใจห้อง ล่างด้านซ้ายนั้นเกิดการหนาตัวขึ้นด้วย เรียกว่าการเปลี่ยนแปลงนี้ว่า "Left ventricular hypertrophy (LVH)" ซึ่งจะทำให้เห็นหัวใจมีขนาดโต มากกว่าปกติ (Cardiomegaly)
- ภาวะ Atherosclerosis ของหลอดเลือดแดงขนาดใหญ่ (Aorta) ซึ่งภาวะ หลอดเลือดแดงแข็งชนิดนี้จะเกิดขึ้นกับหลอดเลือดแดงขนาดกลาง (Arteries) และหลอดเลือดแดงขนาดเล็กมาก (Arterioles) ของสมอง จอ ประสาทตา (Retina) หัวใจ ไต และขาด้วยเช่นกัน เมื่อผู้ป่วยโรคความดัน โลหิตสูงเรื้อรังเกิดภาวะหลอดเลือดแดงแข็งเนื่องจาก Atherosclerosis ที่ หลอดเลือดแดงโคโรนารี (Coronary arteries) ของหัวใจร่วมกับการเกิด LVH จะส่งผลให้มีการตายของกล้ามเนื้อหัวใจห้องล่างด้านซ้ายอย่าง เฉียบพลัน (Acute myocardial infarction) ได้ง่ายมากขึ้น
- ภาวะไตวาย [Kidney (Renal) failure] จากการขาดเลือดไปเลี้ยง (Ischaemia) เนื้อเยื่อของไต เนื่องจากการหนาตัวขึ้นของผนังชั้นในสุด

(Tunica intima) ของหลอดเลือดแดงขนาดกลางและหลอดเลือดแดงขนาด เล็กมากที่ไตนั้น โดยเป็นผลที่เกิดตามมาหลังจากการบาดเจ็บของเซลล์บุ ผนังชั้นในของหลอดเลือด (Endothelial injury) แล้วทำให้เกิดการเพิ่ม จำนวนของเซลล์สร้างเส้นใย (Fibroblasts) ในเนื้อเยื่อเกี่ยวพันที่อยู่ใต้เซลล์ บุผนังชั้นในของหลอดเลือด (Subendothelial connective tissue) และ กลายเป็นเยื่อพังผืด (Fibrosis) ตรงบริเวณดังกล่าว จึงทำให้รูของหลอด เลือดแดงที่ไปเลี้ยงเนื้อเยื่อของไตมีขนาดเล็กลงกว่าปกตินั่นเอง อนึ่งความ ดันโลหิตสูงสามารถก่อให้เกิดการเปลี่ยนแปลงเพิ่มเติมแก่หลอดเลือดแดง ขนาดเล็กมากที่ไตได้อีก 2 แบบคือ Hyaline arteriolosclerosis และ Hyperplastic arteriolosclerosis

1.1.1.1. Hyaline arteriolosclerosis

ความดันโลหิตสูงเรื้อรังนอกจากจะก่อให้เกิดการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดแดงขนาด เล็กมากที่ไตแล้ว ยังก่อให้เกิดการเสื่อม (Degeneration) ของเซลล์กล้ามเนื้อเรียบ (Smooth muscle cells) ในผนังชั้นกลาง (Tunica media) ของหลอดเลือดแดงขนาดเล็กมากนั้นด้วย ซึ่งผนังชั้นกลางของหลอดเลือด ดังกล่าวจะถูกแทนที่ด้วยสสารที่มีชื่อว่า "*ไฮยาลิน (Hyaline)*" โดยเมื่อนำเนื้อเยื่อไตที่มีการเปลี่ยนแปลง ดังกล่าวมาย้อมสี Haematoxylin และ Eosin (H&E) และดูด้วยกล้องจุลทรรศน์จะพบว่า ผนังชั้นกลางของ หลอดเลือดแดงขนาดเล็กมากซึ่งถูกแทนที่ด้วย Hyaline นั้นจะเห็นเป็นสีชมพูทึบทั้งหมด ผลจากการหนาและ แข็งตัวของหลอดเลือดแดงขนาดเล็กมากนี้จะก่อให้เกิดการขาดเลือดและการตายของเนื้อเยื่อไตเป็นบริเวณ โดยทั่ว ซึ่งเนื้อเยื่อไตที่ตายก็จะถูกแทนที่ด้วยเยื่อพังผืดในเวลาต่อมาและเรียกการเปลี่ยนแปลงนี้ว่า "Nephrosclerosis" อันนำไปสู่ภาวะไตวายได้ในที่สุด^(3,4,7)

1.1.1.2. Hyperplastic arteriolosclerosis

ขณะตรวจร่างกายหากผู้ป่วยโรคความดันโลหิตสูงมี DBP สูงกว่า 130 mmHg พร้อมกับมีเลือดออกที่ จอประสาทตาทั้งสองข้าง (Bilateral retinal haemorrhages) และ/หรือพบลักษณะเหมือนปุยฝ้ายสีขาวที่จอ ประสาทตา [Cotton wool spots (exudates)] ทั้งนี้สามารถพบการบวมของขั้วประสาทตา (Papilloedema) ร่วมด้วยหรือไม่ก็ได้ นั่นคือผู้ป่วยเป็น "โรคความดันโลหิตสูงชนิดร้ายแรง [Malignant (Accelerated) hypertension]" ซึ่งจะก่อให้เกิดการเปลี่ยนแปลงกับหลอดเลือดแดงขนาดกลาง หลอดเลือดแดงขนาด เล็ก (Small arteries) และหลอดเลือดแดงขนาดเล็กมากของไตได้ 2 ลักษณะดังนี้คือ

- ลักษณะแรกจะเกิดการตายของเซลล์แบบ Fibrinoid necrosis ที่ผนังของหลอดเลือดแดงขนาด เล็กมากซึ่งนำเลือดเข้า (Afferent arterioles) กลุ่มหลอดเลือดฝอยในเนื้อไต (Glomerulus)^(4,5,10) ทำให้เกิดการสร้างลิ่มเลือดขึ้นภายในหลอดเลือดแดงนั้นขณะที่ยังมีชีวิตอยู่ (Thrombosis) ซึ่ง นำไปสู่ความบกพร่องในการทำงานของไต
- ลักษณะที่สองจะเกิดการอักเสบที่ผนังชั้นใน (Endarteritis) ของหลอดเลือดแดงขนาดกลางและ หลอดเลือดแดงขนาดเล็กในเนื้อไต ทำให้เซลล์สร้างเส้นใยและเซลล์ที่มีคุณสมบัติคล้ายเซลล์ กล้ามเนื้อเรียบ (Myointimal cells)⁽²⁾ ในเนื้อเยื่อเกี่ยวพันที่อยู่ใต้เซลล์บุผนังชั้นในของหลอด เลือด จะถูกกระตุ้นให้แบ่งตัวและเพิ่มจำนวนมากขึ้นจนเรียงตัวซ้อนเป็นชั้นคล้ายเปลือกหัวหอม (Onion skin) ซึ่งนำไปสู่การหนาตัวขึ้นของผนังชั้นในของหลอดเลือดแดงทั้งสองชนิดดังกล่าว ข้างต้น จึงเรียกการเปลี่ยนแปลงของหลอดเลือดแดงลักษณะนี้ว่า "Hyperplastic

arteriolosclerosis" โดยผลจากการเปลี่ยนแปลงนี้จะทำให้เกิดการตีบแคบของหลอดเลือดแดง และนำไปสู่การขาดเลือดไปเลี้ยงเนื้อเยื่อของไต จนในที่สุดเกิดภาวะไตวายขึ้นมา^(3,5,10)

1.1.2. Atherosclerosis

Atherosclerosis หมายถึง ภาวะที่ผนังของหลอดเลือดแดงมีความแข็งมากกว่า ปกติ เนื่องจากเกิดการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือด (Endothelial injury) แล้วทำให้สารไขมัน (Lipid) ไปสะสมอยู่ที่เนื้อเยื่อเกี่ยวพันซึ่งอยู่ใต้เซลล์บุผนัง ชั้นในของหลอดเลือดนั้น ร่วมกับเกิดการสร้างเยื่อพังผืดไปล้อมรอบบริเวณที่มีไขมันสะสม อยู่ดังกล่าวข้างต้นด้วย เมื่อดูด้วยตาเปล่าจะพบว่าผิวของผนังชั้นในของหลอดเลือดแดงมี ลักษณะเป็นรอยนูนเล็กน้อยและมีสีเหลือง (Fatty streaks) ซึ่งคล้ายกับสีของข้าวโอ๊ตต้ม [คำว่า "Athero" มาจากภาษากรีก แปลว่า ข้าวโอ๊ตต้ม (Gruel)] โดยบริเวณของผนังหลอด เลือดแดงที่เกิดการเปลี่ยนแปลงนี้จะมีความแข็งเพิ่มขึ้นจากการสร้างเยื่อพังผืดนั่นเอง (คำว่า "Scleros" มาจากภาษากรีก แปลว่า แข็ง)⁽³⁾

อนึ่งเมื่ออายุมากขึ้น Myointimal cells ซึ่งอยู่ใต้เซลล์บุผนังชั้นในของหลอดเลือด แดงนั้นจะเริ่มมีการสะสมไขมันภายในไซโตพลาสซึม (Cytoplasm) ของเซลล์เพิ่มขึ้นด้วย⁽²⁾ นอกจากนั้นยังมีการเปลี่ยนแปลงอื่นเกิดขึ้นกับผนังของหลอดเลือดแดงในผู้สูงอายุดังนี้คือ (ก) ผนังชั้นในของหลอดเลือดแดงหนาตัวขึ้นเรื่อยๆ จากการเกิดเยื่อพังผืดสะสมอย่าง ต่อเนื่อง; (ข) ผนังชั้นกลางของหลอดเลือดแดงถูกแทนที่ด้วยเยื่อพังผืด; (ค) เกิดการสะสม สารประกอบมิวโคโพลีแซ็กคาไรด์ (Mucopolysaccharide) ระหว่างเซลล์ต่างๆ ในผนัง ของหลอดเลือดแดง; และ (ง) เส้นใยยืดหยุ่นภายในผนังของหลอดเลือดแดงเกิดการขาด เป็นท่อนๆ (Fragmentation of the elastic laminae) โดยปัจจัยดังกล่าวข้างต้นสามารถ ก่อให้เกิด Atherosclerosis ได้ง่ายมากขึ้นกับหลอดเลือดแดงของผู้สูงอายุ⁽⁴⁾

ปัจจัยเสี่ยงหลักสำหรับการเกิด Atherosclerosis แต่เป็นปัจจัยเสี่ยงที่สามารถ ควบคุมได้มีอยู่ 4 อย่าง คือ (ก) ภาวะสารไขมันสูงในเลือด (Hyperlipidaemia) โดยเฉพาะระดับที่เพิ่มสูงขึ้นของสารไขมันที่มีความหนาแน่นต่ำ [Low-density lipoprotein (LDL)]; (ข) การสูบบุหรี่; (ค) เบาหวาน [Diabetes mellitus (DM)]; และ (ง) ความดันโลหิตสูง นั่นคือหากร่างกายปราศจากเงื่อนไขดังกล่าวข้างต้นทั้ง 4 อย่างนี้ ก็จะลดการเกิด Atherosclerosis กับผนังของหลอดเลือดแดงได้อย่างมาก

กลไกการเกิด Atherosclerosis

เมื่อเกิดการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดไม่ว่าจากสาเหตุใดก็ตาม จะเพิ่มสภาพซึมผ่าน ได้ (Permeability) ของเซลล์บุผนังชั้นในของหลอดเลือด ทำให้สารไขมันชนิด LDL ที่อยู่ในกระแสเลือดผ่าน บริเวณเซลล์บุผนังชั้นในของหลอดเลือดที่ถูกทำลายนั้น เข้าไปสะสมอยู่ที่เนื้อเยื่อเกี่ยวพันซึ่งอยู่ใต้เซลล์บุผนัง ชั้นในของหลอดเลือด แล้วสารไขมันนี้จะทำปฏิกิริยาออกซิเดชั่น (Oxidation) กับสสารที่อยู่ในเนื้อเยื่อเกี่ยวพัน นั้น โดย Oxidised LDL จะเหนี่ยวนำให้เซลล์เม็ดเลือดขาวชนิดโมโนไซต์ (Monocytes) และทีลิมโฟไซต์ (Tlymphocytes) ที่อยู่ในกระแสเลือด เกิดการยึดเกาะกับเซลล์บุผนังชั้นในของหลอดเลือดแล้วผ่านรอยต่อ ระหว่างเซลล์บุผนังนี้ เข้าไปสู่เนื้อเยื่อเกี่ยวพันซึ่งอยู่ใต้เซลล์บุผนังชั้นในของหลอดเลือด จากนั้น Monocytes จะถูกกระตุ้นให้เปลี่ยนเป็นเซลล์แมคโครเฟจ (Macrophages) เพื่อทำหน้าที่กลืนกิน (Phagocytosis)

Oxidised LDL เมื่อนำเนื้อเยื่อหลอดเลือดแดงที่มีการเปลี่ยนแปลงดังกล่าวมาย้อมสี H&E และดูด้วยกล้อง จุลทรรศน์จะพบว่า สารไขมันชนิด LDL จำนวนมากที่ถูกกลืนกินเข้าไปอยู่ใน Cytoplasm ของ Macrophages นั้นจะดูเหมือนเป็นฟองอากาศเล็กๆ จึงเรียก Macrophages ที่มีลักษณะนี้ว่า "Foam cells" และเมื่อดูด้วย ตาเปล่าก็จะเห็นผนังชั้นในของหลอดเลือดแดงมีลักษณะเป็น Fatty streaks ดังที่กล่าวไว้ในช่วงแรกนั่นเอง สำหรับ T lymphocytes ที่เข้ามาอยู่ในเนื้อเยื่อเกี่ยวพันซึ่งอยู่ใต้เซลล์บุผนังชั้นในของหลอดเลือดจะก่อให้เกิด การอักเสบแบบเรื้อรังขึ้นมาร่วมด้วย^(3,5,7) ทั้งนี้การเกิดเป็น Fatty streaks จนสามารถเห็นได้ด้วยตาเปล่านั้น ต้องใช้เวลาประมาณ 11 – 12 ปีภายหลังจากการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือด⁽¹¹⁾

ในขณะที่ Macrophages กลืนกิน Oxidised LDL อยู่นั้นจะมีการปล่อยสารเคมีซึ่งไปกระตุ้นเซลล์ กล้ามเนื้อเรียบ (Smooth muscle cells) ในผนังชั้นกลางของหลอดเลือดแดงให้เกิดการแบ่งตัว โดยเซลล์ กล้ามเนื้อเรียบที่เพิ่มจำนวนขึ้นมาจะเคลื่อนย้าย (Migration) ไปที่เนื้อเยื่อเกี่ยวพันซึ่งอยู่ใต้เซลล์บุผนังชั้นใน ของหลอดเลือด จากนั้นเซลล์กล้ามเนื้อเรียบที่เคลื่อนย้ายมาเหล่านี้จะสร้างสารประกอบโปรตีนชนิดคอลลา เจน (Collagen) จำนวนมาก และสารเคลือบเซลล์ (Extracellular matrix) ชนิดอื่นอีกเล็กน้อย ได้แก่ สารประกอบโปรตีนอีลาสติน (Elastin) และสารไกลโคสะมิโนไกลแคนส์ (Glycosaminoglycans) ซึ่งสารที่ เซลล์กล้ามเนื้อเรียบสร้างขึ้นมาดังกล่าวข้างต้นนั้นจะกลายเป็นพังผืดปกคลุมหรือห่อหุ้มบริเวณที่มีสารไขมัน ชนิด LDL สะสมและ/หรือมี Foam cells รวมตัวกันอยู่ เมื่อนำเนื้อเยื่อหลอดเลือดแดงที่มีการเปลี่ยนแปลง ดังกล่าวนี้มาย้อมสี H&E และดูด้วยกล้องจุลทรรศน์จะพบว่า ลักษณะของพังผืดที่ปกคลุมหรือห่อหุ้มนั้นคล้าย กับหมวกที่มีปีกข้างหน้าจึงเรียกว่า "Fibrous cap" สำหรับสารไขมันที่สะสมอยู่ใต้พังผืดนั้นจะถูกละลายไป เมื่อเนื้อหลอดเลือดแดงผ่านกระบวนการทางมิญชวิทยา (Histology) ซึ่งต้องใช้ทั้งสารละลายเอทานอล (Ethanol) หรือเอทิลแอลกอฮอล์ (Ethyl alcohol) และสารละลายไซลีน (Xylene) ที่สามารถละลาย สารประกอบไขมันได้ จึงทำให้เห็นบริเวณที่เคยมีสารไขมันอยู่เป็นช่องว่างรูปกระสวยเรียกว่า "Cholesterol clefts" อนึ่งเซลล์กล้ามเนื้อเรียบที่เคลื่อนย้ายมานั้นยังสามารถก่อให้เกิดการสะสมหินปูน (Calcification) ปะปนอยู่กับสารไขมันและ Foam cells ด้วย

บริเวณผนังชั้นในของหลอดเลือดแดงที่เกิด Fibrous cap เมื่อมองด้วยตาเปล่าจะเห็นเป็นแผ่นนูนขึ้นมา เรียกว่า "Atheroma [Atherosclerotic (Fibrofatty or Fibroinflammatory lipid or Fibrous) plaques]" ดังนั้นหลอดเลือดแดงจึงมีผนังที่หนาและมีความแข็งมากยิ่งขึ้นโดยเฉพาะหากเกิดการสะสม หินปูนใน Atheroma นี้ร่วมด้วย^(3-5,7) สำหรับการเกิดเป็น Atheroma จนสามารถเห็นได้ด้วยตาเปล่านั้นต้อง ใช้เวลาประมาณ 15 – 30 ปีภายหลังจากการเกิด Fatty streaks⁽¹¹⁾

การเกิด Atherosclerosis ของหลอดเลือดแดงสามารถแบ่งออกได้เป็น 3 ระดับคือ ระดับเล็กน้อย (Mild) ระดับปานกลาง (Moderate) และระดับรุนแรง (Severe) ซึ่ง Mild atherosclerosis จะเห็นผนัง ชั้นในของหลอดเลือดแดงมีลักษณะเป็นเพียง Fatty streaks เท่านั้น สำหรับ Severe atherosclerosis จะ เห็น Atheroma จำนวนมากกระจายไปตลอดผนังชั้นในของหลอดเลือดแดง หากเป็นหลอดเลือดแดงขนาด กลางหรือขนาดเล็กจะพบว่า Atheroma จะมีความหนาอย่างน้อยครึ่งหนึ่งของเส้นผ่านศูนย์กลางของหลอด เลือดแดงนั้น ทั้งนี้สามารถเรียงลำดับความบ่อยของหลอดเลือดแดงที่จะเกิด Severe atherosclerosis จาก มากไปน้อยได้ดังนี้คือ (I) Abdominal aorta และ Iliac arteries; (II) Proximal coronary arteries; (III) Thoracic aorta, Femoral arteries และ Popliteal arteries; (IV) Internal carotid arteries; และ (V) Middle cerebral arteries, Basilar artery และ Vertebral arteries

ความผิดปกติสืบเนื่องทางกาย (Clinical seguelae) ของ Atherosclerosis (12)

- (ก). เมื่อหลอดเลือดแดงเกิด Atherosclerotic plaque ขึ้นที่ผนังชั้นในของหลอดเลือด ซึ่งจะเป็นปัจจัย ที่ช่วยทำให้เกิดการสร้างลิ่มเลือดขึ้นภายในหลอดเลือดแดงขณะที่ยังมีชีวิตอยู่ได้ง่ายมากขึ้น ทั้งนี้ หากหลอดเลือดแดงที่เกิด Atherosclerosis นั้นจะมีหรือไม่มีลิ่มเลือดดังกล่าว (Thrombus) เกิดขึ้น ร่วมด้วยก็ตาม แต่ทำให้เกิดการอุดตันของหลอดเลือดแดงอย่างน้อยร้อยละ 75 ก็จะทำให้เนื้อเยื่อที่ อยู่ปลายต่อหลอดเลือดแดงนั้นได้รับเลือดที่มีออกซิเจนไปเลี้ยงไม่เพียงพอ และส่งผลให้เกิดการตาย ของเซลล์ในเนื้อเยื่อจากการขาดเลือด (Infarction) ตามมา⁽¹³⁾
- (ข). ส่วนผิวของ Atherosclerotic plaque สามารถแตกหรือกะเทาะออก และหลุดลอยไปตามกระแส เลือดกลายเป็น Atheromatous emboli ซึ่งจะไปอุดกั้นหลอดเลือดแดงขนาดเล็กและหลอดเลือด แดงขนาดเล็กมากได้ จากนั้นจะก่อให้เกิดการตายของเซลล์จากการขาดเลือดในเนื้อเยื่อที่อยู่ปลาย ต่อหลอดเลือดแดงซึ่งถูกอุดกั้นนั่นเอง
- (ค). หลอดเลือดแดงขนาดใหญ่ที่เกิด Atherosclerosis ระดับปานกลางหรือรุนแรง จะสูญเสียความ แข็งแรงของผนังของหลอดเลือด จนทำให้เกิดการโป่งพองของหลอดเลือด (Aneurysm) โดยเฉพาะ หลอดเลือดแดงขนาดใหญ่ตรงส่วนช่องท้อง (Abdominal aorta)

1.1.3. Mönckeberg's medial calcific sclerosis

Mönckeberg's medial calcific sclerosis หมายถึง การที่ผนังของหลอดเลือด แดงมีความแข็งเพิ่มมากขึ้นจากการสะสมหินปูนชนิด Dystrophic calcification ในผนังชั้น กลางของหลอดเลือดแดงขนาดกลาง ซึ่งเป็นผลสืบเนื่องมาจากการเสื่อมสภาพตามวัย (Age-related degeneration) ของเซลล์กล้ามเนื้อเรียบในผนังชั้นกลางของหลอดเลือด แดงนั่นเอง

ภาวะหลอดเลือดแดงแข็งชนิดนี้พบได้บ่อยในผู้ที่อายุมากกว่า 50 ปี โดยมักจะเกิด ขึ้นกับหลอดเลือดแดงต่อไปนี้ Radial, Ulnar, Femoral, Tibial และ Uterine arteries อย่างไรก็ตาม Mönckeberg's medial calcific sclerosis จะไม่ก่อให้เกิดอาการผิดปกติ ทางร่างกายแต่อย่างใด⁽⁵⁾

1.2. ภาวะหลอดเลือดโป่งพอง (Aneurysm)

ภาวะหลอดเลือดโป่งพอง (Aneurysm) หมายถึง การขยายตัวของหลอดเลือดแบบเฉพาะ บางส่วนของหลอดเลือดนั้น โดยการขยายตัวแบบเฉพาะส่วนนี้เป็นแบบถาวรอีกด้วย(4,5,7) อนึ่งคำ ว่า Aneurysm นี้ก็นำมาใช้เรียกการโป่งพองออกเฉพาะส่วนแบบถาวรของผนังกล้ามเนื้อหัวใจห้อง ล่างซ้ายภายหลังการตายของเซลล์กล้ามเนื้อหัวใจจากการขาดเลือดไปเลี้ยง (Myocardial infarction) ด้วยเช่นกัน⁽⁷⁾

สาเหตุของการเกิดภาวะหลอดเลือดแดงโป่งพอง

้การเกิดภาวะหลอดเลือดแดงโป่งพองเป็นผลจากความอ่อนแอของผนังชั้นกลางของหลอดเลือดแดง⁽⁵⁾ โดยมีสาเหตุที่สำคัญดังนี้คือ (ก) Cystic medial degeneration (necrosis); (ข) Atherosclerosis; (ค) การ ติดเชื้อแบคทีเรียหรือเชื้อราที่ผนังหลอดเลือดแดง; (ง) โรคซิฟิลิสตติยภูมิ (โรคซิฟิลิสระยะที่สาม) (Tertiary syphilis); (จ) การอักเสบของหลอดเลือดแดง (Arteritis) จากโรคภูมิต้านตนเอง (Autoimmune diseases); และ (ฉ) ความบกพร่องแต่กำเนิด (Congenital defect) ของผนังของหลอดเลือดแดงในสมอง

(ก). Cystic medial degeneration (necrosis)

Cystic medial degeneration (necrosis) คือ การเสื่อมสภาพและการขาดเป็นท่อนของ เส้นใยยืดหยุ่น (Elastic fibres) ที่อยู่ในผนังชั้นกลางของหลอดเลือดแดง เป็นผลให้เกิด สารประกอบมิวโคโพลีแซ็กคาไรด์ (Mucopolysaccharide) สะสมอยู่ภายในผนังชั้นกลางของ หลอดเลือดแดงนั้น โดยการเกิดภาวะนี้สามารถพบได้ในผู้สูงอายุ ผู้ที่มีความดันโลหิตสูง และผู้ที่ ความผิดปกติทางกรรมพันธุ์ซึ่งมีชื่อว่า "กลุ่มอาการมาร์แฟน (Marfan syndrome)"

กลุ่มอาการมาร์แฟน (Marfan syndrome) เป็นความผิดปกติของร่างกายอันเป็นผลจาก การถ่ายทอดหน่วยพันธุกรรมหรือยืน (Gene) ที่ถูกเปลี่ยนแปลงไปจากปกติ (Mutation) โดยยืน ที่ถูกเปลี่ยนแปลงไปนี้คือ "ยีนไฟบริลลิน-1 (ยีนเอฟบีเอ็น 1) [Fibrillin-1 (FBN1) gene]" จึงทำ ให้เกิดความบกพร่องในการสร้างสารประกอบไกลโคโปรตีน (Glycoprotein) ชื่อ "ไฟบริลลิน (Fibrillin)" ซึ่งสารประกอบนี้จะอยู่นอกเซลล์และเป็นส่วนประกอบหลักของไมโครไฟบริลส์ (Microfibrils) ในเส้นใยยืดหยุ่น (Elastic fibres) นั่นเอง ปกติแล้ว Microfibrils จะอยู่เป็น จำนวนมากในผนังชั้นกลางของหลอดเลือดแดงขนาดใหญ่ (Aorta) เอ็นยึดข้อ (Ligaments) และ เอ็นยึดเลนส์ตา (Suspensory ligament of the crystalline lens of the eye) จึงเป็นเหตุให้ ผู้ที่เป็น Marfan syndrome มีข้อต่อที่หลวมและสามารถยืดข้อต่อได้มากกว่าปกติ ลักษณะอื่นที่ เด่นชัดของกลุ่มอาการนี้คือ รูปร่างผอมสูงร่วมกับมีแขน ขา และนิ้วมือที่ยาวกว่าปกติ ซึ่งจากการ ที่ Marfan syndrome มีการสร้างเส้นใยยืดหยุ่นที่ไม่สมบูรณ์ ดังนั้นผนังชั้นกลางของหลอดเลือด แดงใหญ่จะไม่มีความแข็งแรงมากพอที่จะต้านทานแรงดันเลือดได้ จึงทำให้เกิดภาวะหลอดเลือด แดงใหญ่โป่งพองนั่นเองโดยเฉพาะส่วนของหลอดเลือดแดงใหญ่ช่วงทรวงอก (Thoracic aorta) อนึ่งผลของการเกิด Cystic medial degeneration (necrosis) กับผนังชั้นกลางของหลอดเลือด แดงใหญ่อาจนำไปสู่การเซาะแยกของผนังหลอดเลือดแดงใหญ่ (Aortic Dissection) ด้วยเช่นกัน นอกจากนั้นแล้วการเกิดการโป่งพองของหลอดเลือดแดงใหญ่ช่วงทรวงอก (Thoracic aortic aneurysm) ใน Marfan syndrome มักพบร่วมกับการเกิดภาวะมีลิ้นหัวใจเอออร์ติกสองลิ้นแต่ กำเนิด (Bicuspid aortic valve)⁽¹⁴⁾

(ข). Atherosclerosis

ภาวะหลอดเลือดแดงใหญ่โป่งพอง (Aortic aneurysm) จาก Atherosclerosis มักจะ เกิดขึ้นที่หลอดเลือดแดงใหญ่ในส่วนช่องท้อง (Abdominal aorta) ช่วงที่อยู่ระหว่างหลอดเลือด แดงของไต (Renal arteries) กับทางแยกของหลอดเลือดแดงใหญ่ (Aortic bifurcation) ซึ่ง ภาวะหลอดเลือดแดงใหญ่โป่งพองชนิดนี้เรียกชื่อว่า "Abdominal aortic aneurysm (AAA)" โดยมีอาการแสดงที่พบเป็นส่วนใหญ่คือ ก้อนในท้องที่สามารถคลำได้และมีการเต้นตาม จังหวะชีพจร (Palpable and pulsatile abdominal mass) ทั้งนี้ภาวะแทรกซ้อนที่สำคัญที่สุด และนำไปสู่การเสียชีวิตได้นั้นคือ การแตก (Rupture) ของหลอดเลือดแดงใหญ่ส่วนที่โป่งพอง และทำให้มีเลือดออกในช่องว่างหลังเยื่อบุช่องท้องเป็นปริมาณมาก (Massive retroperitoneal haemorrhage) ซึ่งจะทำให้ผู้ป่วยเสียชีวิตจากการที่ร่างกายเกิดภาวะซ็อกจากปริมาตรของเลือด ลดลง (Hypovolaemic shock) อย่างทันทีนั่นเอง^(4,5)

(ค). การติดเชื้อแบคทีเรียหรือเชื้อราที่ผนังหลอดเลือดแดง

ภาวะหลอดเลือดแดงโป่งพองจากการติดเชื้อแบคทีเรียหรือเชื้อราที่ผนังหลอดเลือดแดง จะทำให้ผนังของหลอดเลือดแดงอ่อนแอจากการถูกทำลายและไม่สามารถทนต่อแรงดันเลือดใน หลอดเลือดแดงนั้นได้ เรียกว่า "Mycotic (Infectious) aneurysm" ซึ่งเชื้อแบคทีเรียหรือ เชื้อราที่เป็นสาเหตุของการทำลายผนังหลอดเลือดแดงมาจากการติดเชื้อในกระแสเลือด (Septicaemia) แล้วเชื้อเหล่านี้เข้าสู่ผนังชั้นกลางของหลอดเลือดแดงผ่านทางหลอดเลือดแดง ขนาดเล็กซึ่งมีชื่อว่า "Vasa vasorum" ที่อยู่ในผนังชั้นนอกของหลอดเลือดแดง (Tunica adventitia) [ดูรายละเอียดของหลอดเลือดแดง Vasa vasorum ในหัวข้อ 1.4 การอักเสบของ หลอดเลือดแดงใหญ่เนื่องจากโรคซิฟิลิส (Syphilitic Aortitis)] สำหรับแหล่งของเชื้อ แบคทีเรียและเชื้อราอันนำไปสู่การติดเชื้อในกระแสเลือดนั้นส่วนใหญ่มาจากการติดเชื้อของเยื่อบุ ชั้นในของหัวใจและลิ้นหัวใจ [Bacterial (Infective) endocarditis] โดยหลอดเลือดแดงที่พบ บ่อยสำหรับการเกิดการโป่งพองของผนังหลอดเลือดแดงจากการติดเชื้อ ได้แก่ หลอดเลือดแดงใหญ่และหลอดเลือดแดงของสมอง (Cerebral arteries)⁽⁴⁾

(ง). โรคซิฟิลิสตติยภูมิ (โรคซิฟิลิสระยะที่สาม) (Tertiary syphilis)

โรคซิฟิลิสตติยภูมิ (โรคซิฟิลิสระยะที่สาม) จะทำให้เกิดการอักเสบของผนังของหลอดเลือด แดงใหญ่และนำไปสู่การเกิดการโป่งพองของหลอดเลือดแดงใหญ่ส่วนขึ้น (Ascending aorta) [ดูรายละเอียดในหัวข้อ 1.4 การอักเสบของหลอดเลือดแดงใหญ่เนื่องจากโรค ซิฟิลิส (Syphilitic Aortitis)]

(จ). การอักเสบของหลอดเลือดแดง (Arteritis) จากโรคภูมิต้านตนเอง (Autoimmune diseases)

การอักเสบของผนังของหลอดเลือดแดงใหญ่จนนำไปสู่การเกิดภาวะหลอดเลือดแดงใหญ่ โป่งพอง สามารถพบได้ในโรคภูมิต้านตนเองที่ทำให้เกิดการการอักเสบของหลอดเลือดแดง (Arteritis) 2 โรค ดังนี้คือ Giant cell arteritis และ Takayasu arteritis (กูรายละเอียดใน หัวข้อ 1.5 การอักเสบของหลอดเลือด (Vasculitis)]

(ฉ). ความบกพร่องแต่กำเนิด (Congenital defect) ที่ผนังของหลอดเลือดแดงในสมอง

ความบกพร่องแต่กำเนิดที่ผนังของหลอดเลือดแดงในสมองคือ เซลล์กล้ามเนื้อเรียบที่อยู่ใน ผนังชั้นกลางของหลอดเลือดแดงถูกแทนที่ด้วยเนื้อเยื่อพังผืด (4) จึงทำให้ผนังของหลอดเลือดแดง ในสมองนั้นไม่มีความแข็งแรงและไม่สามารถทนต่อแรงดันเลือดในหลอดเลือดแดงได้ เป็นผลให้ หลอดเลือดแดงในสมองเกิดการโป่งพองโดยมีลักษณะคล้ายผลเบอร์รี่ (Berry) จึงเรียกว่า "Berry aneurysm" ซึ่งตำแหน่งที่พบบ่อยคือหลอดเลือดแดงในสมองที่วงของวิลลิส (Circle of Willis) ได้แก่ (I) บริเวณระหว่าง Anterior cerebral artery กับ Anterior communicating artery; (II) บริเวณระหว่าง Internal carotid artery กับ Posterior communicating artery; และ (III) บริเวณระหว่างส่วนหลักของ Middle cerebral artery กับทางแยก (Bifurcation) ของ Internal carotid artery ทั้งนี้ภาวะแทรกซ้อนที่สำคัญคือการแตกของ Berry aneurysm แล้วทำให้เกิดเลือดออกใต้เยื่อหุ้มสมองชั้นกลาง (Subarachnoid haemorrhage) (4,5)

1.3. การเซาะแยกของผนังหลอดเลือดแดงใหญ่ (Aortic Dissection)

การเซาะแยกของผนังหลอดเลือดแดงใหญ่ (Aortic Dissection) เป็นการฉีกขาดตามแนว ยาวของผนังของหลอดเลือดแดงใหญ่ โดยเริ่มต้นจากผนังชั้นในแล้วเลือดที่อยู่ในหลอดเลือดจะค่อยๆ เซาะแยกไปจนถึงผนังชั้นกลาง และกลายเป็นช่องที่มีเลือดขัง (Blood-filled space) อยู่ในผนังชั้น กลางของหลอดเลือดแดงใหญ่ การเซาะแยกของผนังของหลอดเลือดแดงใหญ่มักเกิดขึ้นบ่อยในผู้ที่มี อายุ 60 – 70 ปี ทั้งนี้ผู้ป่วยส่วนใหญ่จะมีประวัติของความดันโลหิตสูงเป็นปัจจัยสำคัญต่อการเกิด ภาวะนี้ อนึ่ง Atherosclerosis และ Bicuspid aortic valve ก็มีความเกี่ยวข้องกับการเกิดการเซาะ แยกของผนังของหลอดเลือดแดงใหญ่ด้วยเช่นกัน

ผู้ป่วยจะมีอาการเจ็บหน้าอกอย่างรุนแรงและเฉียบพลัน ซึ่งอาการเจ็บนี้อาจร้าวไปที่คอ ด้านหลัง และบริเวณท้อง จึงทำให้แพทย์วินิจฉัยโรคผิดว่าผู้ป่วยมีอาการของโรคกล้ามเนื้อหัวใจตาย อย่างเฉียบพลันได้ สาเหตุของการเสียชีวิตในผู้ป่วยที่เกิดการเซาะแยกของผนังของหลอดเลือดแดง ใหญ่ มักเป็นผลจากการฉีกขาดโดยตลอดความหนาของผนังของหลอดเลือดแดงใหญ่ จนเลือดที่อยู่ ในหลอดเลือดแดงใหญ่ไหลเข้าไปอยู่ในช่องเยื่อหุ้มหัวใจ (Pericardial cavity) เป็นปริมาณมาก เรียกว่า "Haemopericardium" หรือเลือดไหลเข้าไปอยู่ในช่องประจันอก (Mediastinum) เป็น ปริมาณมากเรียกว่า "Haemomediastinum" หรือเลือดไหลเข้าไปอยู่ในช่องไระจันอก (Pleural cavity) เป็นปริมาณมากเรียกว่า "Haemothorax" โดยเฉพาะในโพรงเยื่อหุ้มปอด ด้านซ้าย หรือเลือดไหลเข้าไปอยู่ในช่องท้อง (Abdominal cavity) เป็นปริมาณมากเรียกว่า "Haemoperitoneum" หรือเลือดไหลเข้าไปอยู่ในช่องว่างหลังเยื่อบุช่องท้องเป็นปริมาณมาก อัน นำไปสู่การเกิดภาวะซ็อกจากปริมาตรของเลือดลดลงอย่างทันทีและทำให้ผู้ป่วยเสียชีวิตในเวลา ต่อมานั่นเอง^(3-5,14,16)

1.4. การอักเสบของหลอดเลือดแดงใหญ่เนื่องจากโรคซิฟิลิส (Syphilitic Aortitis)

โรคซิฟิลิสตติยภูมิหรือโรคซิฟิลิสระยะที่สามจะก่อให้เกิดการอักเสบแบบเรื้อรังของหลอด เลือดแดงขนาดเล็กที่มีชื่อว่า "Vasa vasorum" โดยเป็นการอักเสบของ Vasa vasorum ที่เกิดขึ้น อย่างช้าๆ และต่อเนื่องซึ่งเรียกว่า "Endarteritis obliterans" (15) สำหรับหลอดเลือดแดง Vasa vasorum นั้นเป็นหลอดเลือดแดงขนาดเล็กที่อยู่ในเนื้อเยื่อเกี่ยวพันของผนังชั้นนอกของหลอดเลือด ที่มีขนาดเส้นผ่านศูนย์กลางอย่างน้อย 0.5 มิลลิเมตร (17) ซึ่งแขนงของ Vasa vasorum นี้จะเข้าไป เลี้ยงบริเวณส่วนครึ่งนอกของผนังชั้นกลางของหลอดเลือดแดง สำหรับผนังชั้นในและบริเวณส่วน ครึ่งในของผนังชั้นกลางของหลอดเลือดแดงนั้นจะได้รับสารอาหารและออกซิเจนซึ่งแพร่ผ่านมาจาก เลือดที่ไหลอยู่ในรูของหลอดเลือดแดงนั่นเอง (2,17)

ดังนั้นเมื่อเกิด Endarteritis obliterans ของ Vasa vasorum ก็จะทำให้มีการสร้างลิ่มเลือด ขึ้นภายในหลอดเลือดขณะที่ยังมีชีวิตอยู่ได้ง่ายขึ้น ซึ่งเป็นผลให้มีเลือดไปเลี้ยงเซลล์กล้ามเนื้อเรียบที่ อยู่ในบริเวณส่วนครึ่งนอกของผนังขั้นกลางของหลอดเลือดแดงใหญ่นั้นไม่เพียงพอ นำไปสู่การตาย ของเซลล์บริเวณดังกล่าวได้ พร้อมกันนี้การอักเสบเรื้อรังที่เกิดขึ้นกับ Vasa vasorum นี้จะลามไป ตามแขนงของหลอดเลือดแดง Vasa vasorum ที่ไปเลี้ยงผนังชั้นกลางของหลอดเลือดแดงใหญ่ด้วย จึงทำให้มีการทำลายเส้นใยยืดหยุ่นซึ่งอยู่รอบแขนงของหลอดเลือดนั้นในบริเวณส่วนครึ่งนอกของ ผนังชั้นกลางของหลอดเลือดแดงใหญ่ ต่อมาผนังชั้นกลางของหลอดเลือดแดงใหญ่ที่เกิดการตายจาก การขาดเลือดไปเลี้ยงนี้จะถูกแทนที่ด้วยเยื่อพังผืด โดยเยื่อพังผืดที่เกิดขึ้นจะดึงรั้งผนังชั้นในและ

บริเวณส่วนครึ่งในของผนังชั้นกลางของหลอดเลือดแดงใหญ่ เมื่อมองผิวของผนังชั้นในของหลอด เลือดแดงใหญ่ด้วยตาเปล่าจะเห็นว่าส่วนที่ถูกดึงรั้งด้วยเยื่อพังผืดเกิดเป็นรอยบุ๋มลงไป ส่วนบริเวณ ผิวของผนังชั้นในของหลอดเลือดแดงใหญ่ที่ไม่ได้ถูกดึงรั้งก็จะมีลักษณะเรียบและดูเหมือนเป็นรอย นูนเล็กน้อย ซึ่งลักษณะที่ปรากฏดังกล่าวนี้ดูคล้ายกับเปลือกไม้ (Tree bark appearance) อนึ่ง ผลของการเกิดเยื่อพังผืดและการทำลายเส้นใยยืดหยุ่นในบริเวณส่วนครึ่งนอกของผนังชั้นกลาง เป็น ผลให้ผนังของหลอดเลือดแดงใหญ่เกิดความอ่อนแอและสูญเสียความยืดหยุ่นต่อแรงดันเลือดที่อยู่ใน หลอดเลือดจนเกิดการโป่งพองของหลอดเลือดแดงใหญ่ตามมา ซึ่งตำแหน่งที่พบได้บ่อยคือหลอด เลือดแดงใหญ่ส่วนขึ้น (Ascending aorta)

การโป่งพองของหลอดเลือดแดงใหญ่ส่วนขึ้นเนื่องจากการอักเสบของหลอดเลือดในโรคซิฟิลิส ระยะที่สาม (Syphilitic Aortitis) ทำให้เส้นรอบวงของลิ้นหัวใจเอออร์ติก (Aortic valve) มีความ ยาวมากกว่าปกติ ลิ้นหัวใจเอออร์ติกทั้งสามลิ้นจึงปิดได้ไม่สนิท เลือดที่ถูกส่งผ่านหลอดเลือดแดง ใหญ่ส่วนขึ้นไปแล้วเกิดการไหลย้อนกลับเข้าสู่หัวใจห้องล่างด้านซ้ายอีกครั้ง เรียกว่า "ภาวะลิ้น หัวใจเอออร์ติกรั่ว [Aortic regurgitation (AR)]" โดยขณะที่เลือดไหลย้อนกลับผ่านลิ้นหัวใจเออร์ติกจะเกิดเสียงฟู่ (Murmur) ที่สามารถได้ยินขณะตรวจร่างกายผู้ป่วย^(15,18)

การอักเสบของหลอดเลือดแดงใหญ่ส่วนขึ้นนี้อาจทำให้เกิดการตีบแคบหรือการอุดตันของรู เปิดหลอดเลือดแดงโคโรนารี่ (Coronary arteries) จนนำไปสู่การขาดเลือดไปเลี้ยงผนังของ กล้ามเนื้อหัวใจและเกิดการตายของกล้ามเนื้อหัวใจอย่างเฉียบพลันได้อีกด้วย⁽¹⁵⁾

1.5. การอักเสบของหลอดเลือด (Vasculitis)

โดยปกติแล้วการอักเสบของหลอดเลือด (Vasculitis) จะเกี่ยวข้องการโรคภูมิต้านตนเอง ซึ่ง จะก่อให้เกิดการตายของเซลล์แบบ Fibrinoid necrosis ในผนังของหลอดเลือดแดง นั่นคือมีการ ทำลายคอลลาเจนและเซลล์กล้ามเนื้อเรียบที่ผนังขั้นกลางของหลอดเลือดแดง เมื่อนำเนื้อเยื่อของ ผู้ป่วยโรคภูมิต้านตนเองที่มีการอักเสบของหลอดเลือดมาทำการย้อมด้วยสี H&E และดูด้วยกล้อง จุลทรรศน์ จะพบว่าเนื้อเยื่อตลอดเส้นรอบวงของผนังหลอดเลือดถูกแทรกด้วยเซลล์เม็ดเลือดขาว และมีวัตถุสีชมพูสดสม่ำเสมอลักษณะคล้ายไฟบริน (Fibrinoid material) เข้าไปแทนที่เนื้อเยื่อ ปกติของผนังหลอดเลือดนั้น ทั้งนี้ Fibrinoid material ซึ่งถูกสร้างขึ้นจากกระบวนการอักเสบของ หลอดเลือด ประกอบด้วยสารต่างๆ ได้แก่ โปรตีนจากเซลล์ที่ถูกทำลาย สารจากการสลายตัวของ คอลลาเจน สารภูมิต้านทาน (Immunoglobulins) สารโปรตีนจากระบบคอมพลีเมนต์ (Complement system) อัลบูมิน (Albumin) และไฟบริน⁽¹⁹⁾

ผลของการอักเสบของหลอดเลือดแดงร่วมกับการเกิด Fibrinoid necrosis นี้นำไปสู่การสร้าง ลิ่มเลือดขึ้นภายในหลอดเลือดแดงขณะที่ยังมีชีวิตอยู่จนเกิดการอุดตันของหลอดเลือดแดง ทำให้ เลือดไปเลี้ยงได้ไม่เพียงพอแก่เนื้อเยื่อต่างๆ ซึ่งอยู่ปลายต่อหลอดเลือดแดงที่มีการอุดตันนั้น และเกิด การตายของเซลล์ชนิด Coagulative necrosis, Gangrenous necrosis (Gangrene) (20) หรือ Colliquative (Liquefactive) necrosis ตามมา โดยขึ้นอยู่กับชนิดของเนื้อเยื่อที่เกิดการขาดเลือด ไปเลี้ยงหลังจากมีการอักเสบของหลอดเลือดนั่นเอง

การอักเสบของหลอดเลือดแดงที่ควรรู้มีดังต่อไปนี้คือ Polyarteritis nodosa (PAN), Temporal (Giant cell) arteritis, Kawasaki disease (Mucocutaneous lymph node syndrome), Buerger disease (Thromboangiitis obliterans) และ Raynaud syndrome

1.5.1. Polyarteritis nodosa (PAN)

Polyarteritis nodosa (PAN) เป็นการอักเสบที่เกิดขึ้นกับหลอดเลือดแดงขนาด เล็กและขนาดกลางในเนื้อเยื่อต่างๆ ของร่างกาย โดยอาจเกี่ยวข้องกับการติดเชื้อไวรัสตับ อักเสบชนิดบี [Hepatitis B virus (HBV)] เชื้อไวรัสตับอักเสบชนิดซี [Hepatitis C virus (HCV)] และเชื้อเฮชไอวี [Human immunodeficiency virus (HIV)] (5)

1.5.2. Temporal (Giant cell) arteritis

Temporal (Giant cell) arteritis เป็นการอักเสบของหลอดเลือดแดงแบบแกรนู โลมา (Granulomatous arteritis) โดยเกิดขึ้นได้บ่อยกับ Temporal artery ทั้งนี้ สามารถเกิดขึ้นกับหลอดเลือดแดงเส้นอื่นบริเวณศีรษะ หลอดเลือดแดงใหญ่ และแขนงของ หลอดเลือดแดงใหญ่ได้อีกด้วย ผู้ป่วยมักมีอายุตั้งแต่ 70 ปีขึ้นไป ทั้งนี้สามารถพบ Temporal (Giant cell) arteritis เกิดขึ้นในเพศหญิงได้บ่อยมากกว่าเกิดขึ้นในเพศชายเป็น จำนวนเล็กน้อย อนึ่งหากการอักเสบของหลอดเลือดแดงชนิดนี้เกิดขึ้นในผู้หญิงที่อายุน้อย กว่า 50 ปีจะเรียกว่า "Takayasu disease"

ผู้ป่วยจะแสดงอาการปวดศีรษะแบบตุบๆ บริเวณขมับ บางครั้งหากการอักเสบนี้เกิด ขึ้นกับ Ophthalmic artery หรือ Posterior ciliary arteries ร่วมด้วย อาจทำให้เกิด อาการตาบอดข้างเดียวหรือสองข้างแบบชั่วคราวหรือถาวรได้ อย่างไรก็ตามอาการของ Temporal (Giant cell) arteritis จะค่อยๆ บรรเทาลงในระยะเวลา 6 – 12 เดือนและ สามารถหายเองได้^(4,5)

1.5.3. Kawasaki disease (Mucocutaneous lymph node syndrome)

Kawasaki disease (Mucocutaneous lymph node syndrome) เป็นการ อักเสบอย่างเฉียบพลันของหลอดเลือดร่วมกับเกิดการตายของผนังของหลอดเลือด ซึ่ง เกี่ยวข้องกับการติดเชื้อไวรัสหรือแบคทีเรีย โรคนี้จะเกิดขึ้นได้บ่อยในเด็กอายุ 1 เดือน – 2 ปี (Infant) โดยมีอาการและอาการแสดงดังนี้คือ ไข้สูง ผื่นตามผิวหนัง (Rash) รอยโรคที่ เยื่อบุตา (Conjunctiva) รอยโรคที่ปาก และต่อมน้ำเหลืองอักเสบ (Lymphadenitis) ปกติ แล้ว Kawasaki disease เป็นโรคที่สามารถหายเองได้ แม้กระนั้นก็ตามผู้ป่วยร้อยละ 70 จะเกิดการอักเสบของหลอดเลือดแดงโคโรนารี่และนำไปสู่การโป่งพองของหลอดเลือดแดงโคโรนารี่ (Coronary artery aneurysms) ซึ่งร้อยละ 1 – 2 ของผู้ป่วยโรคนี้และมีการ อักเสบของหลอดเลือดแดงโคโรนารี่เกิดขึ้นร่วมด้วยจะเสียชีวิต⁽⁵⁾

1.5.4. Buerger disease (Thromboangiitis obliterans)

Buerger disease (Thromboangiitis obliterans) เป็นโรคหายาก (Rare disease) แต่เป็นการอักเสบของหลอดเลือดแดงที่เกี่ยวข้องกับการสูบบุหรื่มากที่สุดเมื่อ เปรียบเทียบกับการอักเสบของหลอดเลือดแดงชนิดอื่น ผู้ป่วยส่วนใหญ่เป็นเพศชายอายุ ระหว่าง 25 – 40 ปีที่มีประวัติสูบบุหรี่จัด โดยโรคนี้จะมีการอักเสบของหลอดเลือดแดง ขนาดเล็กและขนาดกลางที่อยู่บริเวณส่วนปลายของแขนและขา ซึ่งผลของการอักเสบที่เกิด ขึ้นกับหลอดเลือดแดงนี้ทำให้ผนังชั้นในของหลอดเลือดถูกแทนที่ด้วยเยื่อพังผืดอย่างมาก

ร่วมกับการสร้างลิ่มเลือดขึ้นภายในหลอดเลือดแดงขณะที่ยังมีชีวิตอยู่ ทั้งนี้การอักเสบที่ เกิดขึ้นจะลุกลามออกมายังผนังชั้นนอกและเนื้อเยื่อเกี่ยวพันที่อยู่รอบๆ หลอดเลือดแดง (Periarteritis) จึงทำให้หลอดเลือดดำ (Veins) และเส้นประสาท (Nerves) ที่อยู่ข้างเคียง เกิดการอักเสบตามมาด้วย

จากพยาธิสภาพของหลอดเลือดดังกล่าวข้างต้นทำให้เกิดการขาดเลือดไปเลี้ยง เนื้อเยื่อต่างๆ ที่อยู่ปลายต่อหลอดเลือดแดงที่มีการอุดตัน ผู้ป่วยจะมีอาการปวดแขนหรือขา เป็นพักๆ เมื่อออกแรง (Intermittent claudication) นั่นคือขณะที่กล้ามเนื้อของแขนหรือ ขามีการเคลื่อนไหว ผู้ป่วยจะมีอาการปวดเกร็งคล้ายเป็นตะคริว (Cramping pain) ของ แขนหรือขา แต่เมื่อหยุดการใช้งานของกล้ามเนื้อ ความต้องการออกซิเจนสำหรับการใช้ พลังงานของกล้ามเนื้อก็จะลดลง เป็นผลให้อาการปวดลดลงอย่างรวดเร็วด้วย อนึ่งผลของ การอุดตันของหลอดเลือดแดงนี้จะส่งผลให้เกิดการตายของเซลล์แบบ Gangrenous necrosis (Gangrene) ในเนื้อเยื่อของนิ้วมือหรือนิ้วเท้าที่อยู่ปลายต่อหลอดเลือดแดงที่มี การอุดตันนั้นด้วย ซึ่งบ่อยครั้งที่การเกิด Gangrene นี้เริ่มจากการปรากฏเป็นแผลที่ทำให้ รู้สึกเจ็บ (Painful ulceration) ตรงส่วนปลายของนิ้วมือหรือนิ้วเท้า โดยการตายของเซลล์ ที่เกิดขึ้นดังกล่าวจะดำเนินไปอย่างต่อเนื่องและนำไปสู่การรักษาด้วยการตัดนิ้วมือหรือ นิ้วเท้า (Amputation) หากผู้ป่วยโรคนี้ยังคงสูบบุหรี่จัดอยู่ก็อาจส่งผลให้เกิด Gangrene ต่อไปเรื่อยๆ จนต้องอาจถูกรักษาด้วยการตัดมือหรือเท้าต่ออีกด้วย (4.5)

เมื่อผู้ป่วยหยุดสูบ^{*}บุหรี่ก็จะทำให้การอักเสบของหลอดเลือดแดงที่เกิดขึ้นชนิดนี้ บรรเทาเบาบางลงจนไม่มีอาการของโรคปรากฏ (Remission) เลยก็ได้ ทว่าหากผู้ป่วย กลับมาสูบบุหรี่อีกครั้งก็จะเป็นผลให้เกิดอาการกำเริบของโรค (Exacerbation) ขึ้นมาได้ เช่นกัน⁽⁵⁾

1.5.5. Raynaud syndrome⁽³⁾

กลุ่มอาการเรย์โน (Raynaud syndrome) เป็นภาวะที่พบได้บ่อยอันเนื่องจาก หลอดเลือดแดงขนาดเล็กและหลอดเลือดแดงขนาดเล็กมากที่นิ้วมือและที่มือ เกิดการหดตัว และการขยายตัวมากกว่าปกติต่อความเย็น อารมณ์เครียด หรือสารนิโคติน (Nicotine) ซึ่ง บางครั้งอาจเกิดขึ้นที่จมูก ติ่งหู หรือริมฝีปากก็ได้ โดยอาการแสดงที่พบได้บ่อยคือเมื่อ ร่างกายสัมผัสกับความเย็นจะทำให้ผิวหนังบริเวณปลายนิ้วมือมีสีซีดลงแล้วต่อมากลายเป็น สีเขียว (Cyanosis) บางครั้งอาจเกิดอาการชา (Numbness) ร่วมด้วย แต่จะไม่ค่อยเกิด อาการเจ็บปวด เมื่อร่างกายได้สัมผัสกับความอบอุ่นอีกครั้ง บริเวณดังกล่าวก็จะมีเลือดไหล กลับเข้ามาเช่นเดิมจึงทำให้ผิวหนังดูมีสีแดงมากขึ้น (Hyperaemia) ซึ่งกลุ่มอาการเรย์โนนี้ จะไม่ปรากฏพยาธิสภาพใดๆ ให้เห็นจึงถือว่าเป็นสภาวะปกติในทางสรีรวิทยา โดยเพศหญิง มักจะพบภาวะนี้ได้บ่อยมากกว่าเพศชาย

สามารถแบ่งกลุ่มอาการเรย์โนออกได้เป็น 2 ชนิด คือ **กลุ่มอาการเรย์โนชนิดปฐม** ภูมิ (Primary Raynaud syndrome) และ **กลุ่มอาการเรย์โนชนิดทุติยภูมิ** (Secondary Raynaud syndrome)

1.5.5.1. กลุ่มอาการเรย์โนชนิดปฐมภูมิ (Primary Raynaud syndrome)

โดยทั่วไปพบว่าจำนวนมากกว่าร้อยละ 80 ของผู้ที่มีกลุ่มอาการเรย์โนเป็น ชนิดปฐมภูมิ ซึ่งพบว่าจะไม่มีโรคประจำตัวแต่อย่างใด

1.5.5.2. กลุ่มอาการเรย์โนชนิดทุติยภูมิ (Secondary Raynaud syndrome)

กลุ่มอาการเรย์โนชนิดทุติยภูมิมักจะเกิดขึ้นในผู้ป่วยโรคภูมิต้านตนเอง โดย ร้อยละ 80 พบในโรค Systemic sclerosis และอีกร้อยละ 20 พบในโรค Systemic lupus erythematosus (SLE)

2. <u>ภาวะและ/หรือความผิดปกติที่เกี่ยวข้องกับหลอดเลือดดำ (Venous blood vessels)</u>

2.1. ภาวะหลอดเลือดขอดที่ขา (Varicose Veins)

ภาวะหลอดเลือดขอดที่ขาพบได้บ่อยในผู้ที่ประกอบอาชีพซึ่งต้องยืนนิ่งอยู่กับที่เป็นเวลานาน จึงทำให้ความดันของหลอดเลือดดำที่ขาสูงขึ้นกว่าปกติ ทั้งนี้ยังสามารถพบร่วมกับโรค/ภาวะอื่นที่ ก่อให้เกิดการเพิ่มขึ้นของความดันในหลอดเลือดดำที่ขา ได้แก่ ภาวะหัวใจล้มเหลว (Congestive heart failure) และเนื้องอกในอุ้งเชิงกราน (Pelvic tumours)

อาการสำคัญของภาวะหลอดเลือดขอดที่ขา คือ มีอาการปวดขาเมื่อต้องยืนอยู่นิ่งๆ และ อาการปวดจะลดลงเมื่อยกขาขึ้น หากเกิดหลอดเลือดขอดที่ขาในขั้นรุนแรงจะเป็นผลให้ผิวหนัง บริเวณนั้นมีการอักเสบและเป็นแผลได้ (Stasis dermatitis)⁽⁵⁾

2.2. <u>ภาวะลิ่มเลือดอุดหลอดเลือดดำส่วนลึกที่ขา [Deep Vein Thrombosis (DVT)]</u>

ภาวะลิ่ม เลือดอุดหลอดเลือดดำส่วนลึกที่ขาสามารถเกิดขึ้นด้วยปัจจัยเดียวกันกับการสร้างลิ่ม เลือดขึ้นภายในหลอดเลือดแดงและในช่องหัวใจขณะที่ยังมีชีวิตอยู่ ดังนี้คือ^(14,21)

2.2.1. การบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดดำ ได้แก่

- การใส่สายสวนหลอดเลือดดำ (Intravenous catheter)
- การอักเสบของหลอดเลือดดำ
- การติดเชื้อของหลอดเลือดดำ
- การฉีกขาดของผนังหลอดเลือดดำจากการผ่าตัดหรือจากอุบัติเหตุ

2.2.2. การไหลช้าของเลือดในหลอดเลือดดำ ได้แก่

- ภาวะหัวใจวาย (Heart failure)
- การที่ร่างกายต้องอยู่นิ่งเป็นเวลานานขณะโดยสารรถหรือเครื่องบินเป็นระยะทางไกล
- การนอนอยู่ติดเตียงเป็นเวลานานภายหลังการเจ็บป่วย การผ่าตัด หรือกระดูกหัก
- ภาวะที่มีเม็ดเลือดแดงมากกว่าปกติหรือโรคเลือดข้น (Polycythaemia vera)

2.2.3. ภาวะเลือดแข็งตัวง่ายกว่าปกติ (Hypercoagulability) ได้แก่

- การรับประทานยาคุมกำเนิด
- ระยะท้ายของการตั้งครรภ์
- มะเร็งเต้านม ปอด กระเพาะอาหาร หรือตับอ่อน

<u>ภาวะแทรกซ้อนเมื่อเกิดลิ่มเลือดอุดหลอดเลือดดำส่วนลึกที่ขา⁽²¹⁾</u>

(ก). Phlegmasia cerulea dolens

เกิดขึ้นเมื่อ DVT ที่ขาอยู่ในขั้นรุนแรงกล่าวคือ มีการสร้างลิ่มเลือดอุดตันหลอดเลือดดำ เกือบสมบูรณ์หรืออุดตันอย่างสมบูรณ์ จนทำให้ขาส่วนนั้นเกิดอาการบวม เจ็บปวด และผิวหนังมี สีเขียวคล้ำ

(ข). <u>ภาวะลิ่มเลือดอุดหลอดเลือดแดงที่เข้าสู่ปอด (Pulmonary Thromboembolism)</u>

เมื่อเกิดลิ่มเลือดขนาดใหญ่อุดตันหลอดเลือดดำที่ขา ลิ่มเลือดนี้มีโอกาสที่จะหลุดลอยไป ตามกระแสเลือดในหลอดเลือดดำเข้าสู่ห้องหัวใจด้านขวา แล้วต่อมาไปอุดอยู่ที่หลอดเลือดแดงซึ่ง ออกจากหัวใจเข้าสู่ปอด (Pulmonary artery) ซึ่งเป็นเหตุให้ผู้ป่วยเสียชีวิตได้ (ดูรายละเอียด ด้านล่าง)

2.3. ภาวะลิ่มเลือดอุดหลอดเลือดแดงที่เข้าสู่ปอด (Pulmonary Thromboembolism)

เมื่อทำการผ่าชันสูตรศพ (Autopsy) ผู้ป่วยที่เสียชีวิตขณะเข้ารับการรักษาในโรงพยาบาล จะ พบภาวะลิ่มเลือดอุดหลอดเลือดแดงที่เข้าสู่ปอดได้เป็นจำนวนมากกว่าร้อยละ 50 ของศพผู้ป่วย เหล่านี้ ทว่าสำหรับผู้ที่มีอายุมากกว่า 40 ปีและได้รับการผ่าตัดจะเกิดภาวะนี้เป็นอาการแทรกซ้อน หลังการผ่าตัดเพียงร้อยละ 1 – 2 เท่านั้น โดยปัจจัยที่ส่งผลให้ผู้ป่วยที่ได้รับการผ่าตัดมีความเสี่ยงที่ เพิ่มสูงขึ้นสำหรับการเกิด Pulmonary thromboembolism ภายหลังการผ่าตัดจะประกอบด้วย (ก) อายุมาก; (ข) รูปร่างอ้วน; (ค) ขั้นตอนและระยะเวลาของกระบวนการผ่าตัด; (ง) การติดเชื้อ ภายหลังการผ่าตัด; (จ) มะเร็ง; และ (ฉ) โรคของหลอดเลือดดำที่เป็นมาก่อนจะได้รับการผ่าตัด

ประมาณร้อยละ 90 ของก้อนลิ่มเลือดซึ่งลอยมาตามกระแสเลือดแล้วอุดหลอดเลือดแดงที่เข้า สู่ปอดขณะที่ยังมีชีวิตอยู่ (Pulmonary emboli) มาจากหลอดเลือดดำส่วนลึกที่ขา โดยเฉพาะลิ่ม เลือดที่เกิดขึ้นใน *Iliofemoral veins* มักจะนำไปสู่การเกิด Pulmonary thromboembolism ที่ ทำให้เกิดอาการรุนแรงจนเสียชีวิตได้ ซึ่งอาการและอาการแสดงของผู้ป่วยที่เกิดภาวะนี้ขึ้นอยู่กับ ขนาดของก้อนลิ่มเลือดที่ลอยอยู่ในกระแสเลือด (Embolus) สุขภาพของผู้ป่วย และระยะเวลาที่เกิด ภาวะนี้เป็นแบบเฉียบพลันหรือแบบเรื้อรัง

ภาวะลิ่มเลือดอุดหลอดเลือดแดงที่เข้าสู่ปอดแบบเฉียบพลัน (Acute pulmonary thromboembolism) จะก่อให้เกิดอาการและอาการแสดงได้หลายรูปแบบดังนี้คือ (I) ไม่แสดง อาการ (Asymptomatic) เนื่องจากก้อนลิ่มเลือดขนาดเล็กลอยมาตามกระแสเลือดแล้วอุดหลอด เลือดแดงที่เข้าสู่ปอด (Small pulmonary emboli); (II) หายใจลำบากชั่วคราว (Transient dyspnoea) และหายใจเร็วกว่าปกติ (Tachypnoea) แต่ไม่มีอาการทางกายอย่างอื่นร่วมด้วย; (III) การตายของเนื้อเยื่อปอดจากการขาดเลือดไปเลี้ยง (Pulmonary infarction) ร่วมกับมีอาการเจ็บ หน้าอกเวลาหายใจเข้าหรือเวลาไอ (Pleuritic chest pain) ไอเป็นเลือด (Haemoptysis) และมีน้ำ ในช่องเยื่อหุ้มปอด (Pleural effusion); และ (IV) การทำงานของระบบหัวใจและหลอดเลือด ล้มเหลว (Cardiovascular collapse) และเสียชีวิตอย่างฉับพลัน (Sudden death) (21)

3. เนื้องอกของหลอดเลือด (Vascular tumours)

3.1. <u>เนื้องอกแบบธรรมดาของหลอดเลือด (Benign vascular tumours)</u>

3.1.1. Capillary haemangioma

Capillary haemangioma เป็นเนื้องอกแบบธรรมดาของหลอดเลือดที่สามารถ เกิดขึ้นที่เนื้อเยื่อส่วนใดก็ได้ของร่างกาย เมื่อ Capillary haemangioma นี้เกิดที่ผิวหนังจะ รู้จักกันโดยทั่วไปว่าเป็นปานแดงแต่กำเนิด ซึ่งบางครั้งจะเรียกรอยปานแดงบนผิวหนังของ เด็กแรกเกิดว่า "ปานสตรอว์เบอร์รี่ [Strawberry naevi (haemangioma)]" โดย ขนาดของรอยปานแดงจะโตขึ้นอย่างรวดเร็วในช่วงอายุ 1 เดือนแรก และสีของรอยปาน แดงจะเริ่มจางลงเมื่อเด็กอายุ 1 – 3 ปี ซึ่งร้อยละ 80 ของเด็กที่มีรอยปานแดงบนผิวหนัง และมีอายุ 5 ปี รอยดังกล่าวนี้จะยุบหายไป (Regression) เนื่องจากรอยปานแดงบนผิวหนัง ของเด็กประกอบขึ้นจากหลอดเลือดฝอยจำนวนมากที่ยังเจริญไม่เต็มที่ (Immature capillaries) เมื่อเด็กอายุมากขึ้นหลอดเลือดฝอยเหล่านี้มีการเจริญเติบโตอย่างสมบูรณ์แล้ว จึงทำให้รอยปานแดงจางหายไปได้ เนื้องอกของหลอดเลือดชนิดนี้จะไม่มีการรุกรานเนื้อเยื่อ ข้างเคียงและไม่มีการกระจายไปยังอวัยวะอื่นในร่างกายอีกด้วย

เมื่อนำเนื้อเยื่อผิวหนังที่มี Capillary haemangioma มาย้อมสี H&E และดูด้วย กล้องจุลทรรศน์จะพบว่า เนื้องอกนี้ประกอบด้วยช่องว่างขนาดเล็กจำนวนมากคล้ายหลอด เลือดฝอย โดยช่องว่างแต่ละช่องนั้นถูกบุด้วยเซลล์ผนังชั้นในของหลอดเลือด (Endothelial cells) และมีเม็ดเลือดแดงบรรจุอยู่ในช่องว่างเหล่านี้ อีกทั้งบริเวณระหว่างช่องว่างจะมี เนื้อเยื่อเกี่ยวพันจำนวนเล็กน้อยแทรกอยู่ (4,5)

3.1.2. Cavernous haemangioma

Cavernous haemangioma เป็นเนื้องอกแบบธรรมดาของหลอดเลือดที่สามารถ เกิดขึ้นได้กับผิวหนัง เยื่อเมือก (Mucosa) ม้าม ตับ และตับอ่อน สำหรับ Cavernous haemangioma ที่เกิดบนผิวหนังจะเรียกว่า "Port wine stain" จะไม่มีการยุบหายไปได้ เอง เมื่อนำเนื้อเยื่อผิวหนังที่มีเนื้องอกชนิดนี้มาย้อมสี H&E และดูด้วยกล้องจุลทรรศน์จะ พบว่าประกอบด้วยช่องว่างขนาดใหญ่จำนวนมากคล้ายหลอดเลือดดำ โดยบริเวณระหว่าง ช่องว่างขนาดใหญ่จะมีเนื้อเยื่อเกี่ยวพันจำนวนเล็กน้อยและช่องว่างขนาดเล็กคล้ายหลอด เลือดฝอยแทรกอยู่ ซึ่งช่องว่างทั้งขนาดเล็กและขนาดใหญ่จะถูกบุด้วย Endothelial cells และมีเม็ดเลือดแดงบรรจุอยู่ในช่องว่างเหล่านี้ (5)

3.1.3. Glomangioma (Glomus tumour)

Glomangioma (Glomus tumour) เป็นเนื้องอกแบบธรรมดาซึ่งกำเนิดจาก เนื้อเยื่อหลอดเลือดที่มีชื่อว่า "Glomus bodies" [โดยปกติแล้ว Glomus bodies เป็น เนื้อเยื่อที่ประกอบด้วยกลุ่มของหลอดเลือดแดงขนาดเล็กมากต่อเชื่อมโดยตรงกับหลอด เลือดดำขนาดเล็กมาก ซึ่งการต่อเชื่อมนี้ไม่มีการผ่านหลอดเลือดฝอย (Arteriovenous shunt) เนื้อเยื่อ Glomus bodies จะทำหน้าที่ควบคุมการไหลเวียนของเลือดในชั้นหนังแท้ (Dermis) ของผิวหนังที่หูชั้นนอก ปลายนิ้วมือ และเท้า เพื่อรักษาระดับอุณหภูมิของ

ร่างกายให้คงที่ในบริเวณดังกล่าว ซึ่งการทำงานของ Glomus bodies นี้อยู่ภายใต้การ ควบคุมของระบบประสาท⁽²²⁾

โดยทั่วไป Glomangioma จะมีขนาดเล็กกว่า 1 เซนติเมตร และตำแหน่งที่พบการ เกิดเนื้องอกชนิดนี้ได้บ่อยก็คือใต้เล็บ จึงทำให้ผู้ป่วยมีอาการเจ็บปวดอย่างรุนแรงตรงบริเวณ ที่เกิดเนื้องอกนั่นเอง^(4,5)

3.2. <u>มะเร็งหลอดเลือด (Malignant vascular tumours) (4,5)</u>

3.2.1. Kaposi's sarcoma

Kaposi's sarcoma เป็นมะเร็งของหลอดเลือดที่เกิดขึ้นได้บ่อยในผู้ที่ติดเชื้อ HIV แล้วต่อมากลายเป็นโรคเอดส์ [Acquired immune deficiency syndrome (AIDS)] โดยเชื้อไวรัสที่เป็นสาเหตุของการกำเนิดมะเร็งชนิดนี้คือ "Human herpes virus type 8 (HHV8) หรือ Kaposi sarcoma-associated herpes virus (KSHV)" ซึ่งสามารถ ตรวจพบอนุภาคของไวรัส (Virus particles) ดังกล่าวได้ในนิวเคลียส (Nucleus) ของ เซลล์มะเร็งชนิดนี้

3.2.2. Angiosarcoma

ถึงแม้ Angiosarcoma จะเป็นมะเร็งของหลอดเลือดแบบทั่วไป แต่เป็นชนิดของ มะเร็งที่พบได้ยาก ซึ่งมะเร็งชนิดนี้เกิดขึ้นได้ในทุกกลุ่มอายุทั้งเพศชายและเพศหญิง โดย ตำแหน่งของร่างกายที่มักพบการเกิด Angiosarcoma ได้แก่ ผิวหนัง เต้านม ตับ ม้าม กระดูก และเนื้อเยื่ออ่อน (Soft tissues) ของขา สำหรับมะเร็งของหลอดเลือดซึ่งเกิดขึ้นที่ ตับ (Hepatic angiosarcoma) จะมีความเกี่ยวข้องกับการที่ร่างกายได้รับสารเคมีก่อมะเร็ง (Chemical carcinogens) เป็นระยะเวลานาน ซึ่งสารเคมีที่เป็นสาเหตุคือ สารหนู (Arsenic) ในสารเคมีกำจัดศัตรูพืช (Pesticides) และสารไวนิลคลอไรด์ (Vinyl chloride) ในผลิตภัณฑ์พลาสติก (Plastics)

4. <u>ภาวะและ/หรือความผิดปกติของหลอดน้ำเหลือง (Lymphatic vessels)</u>(5)

4.1. การอักเสบของหลอดน้ำเหลือง (Lymphangitis)

การอักเสบของหลอดน้ำเหลือง (Lymphangitis) มีสาเหตุส่วนใหญ่จากการติดเชื้อ แบคทีเรียดังต่อไปนี้คือ Group A (Beta-haemolytic) Streptococcus pyogenes และ Staphylococcus aureus โดยจะเกิดเป็นรอยสีแดงที่ผิวหนังและมีอาการเจ็บปวดตามรอยนี้ อนึ่ง มักจะพบการอักเสบของต่อมน้ำเหลือง (Lymphadenitis) ที่อยู่ใกล้ๆ ด้วย^(5,23)

4.2. <u>ภาวะบวมน้ำเหลือง (Lymphoedema)</u>

ภาวะบวมน้ำเหลือง (Lymphoedema) มักเกิดจากการอุดตันของหลอดน้ำเหลือง (Lymphatic obstruction) ทำให้น้ำเหลือง (Lymph) ที่อยู่ในหลอดน้ำเหลืองซึ่งมีการอุดตันนั้นซึม ผ่านออกมาแล้วไปสะสมอยู่ในเนื้อเยื่อที่อยู่รอบๆ หลอดน้ำเหลืองดังกล่าว โดยน้ำเหลืองที่ซึมออกมา นอกหลอดน้ำเหลืองนี้มีปริมาณสารประกอบโปรตีนอยู่เป็นจำนวนมาก จึงทำให้เมื่อกดผิวหนังของ เนื้อเยื่อที่เกิดภาวะบวมน้ำเหลืองจะรู้สึกถึงความแน่นและไม่บุ๋มลงไปเช่นเดียวกับกรณีของการบวม

น้ำ (Pitting oedema) นอกจากนี้เมื่อมีน้ำเหลืองสะสมอยู่ในเนื้อเยื่อเป็นเวลานาน (Chronic lymphoedema) จะกระตุ้นให้เกิดการสร้างเยื่อพังผืดขึ้นมาในชั้นหนังแท้และเนื้อเยื่อบริเวณนั้นได้

สาเหตุของการเกิดหลอดน้ำเหลืองอุดตัน ได้แก่

- หนอนพยาธิที่ทำให้เกิดโรคเท้าช้าง (Elephantiasis หรือ Lymphatic filariasis) คือ Brugia malayi
 และ Wuchereria bancrofti
- มะเร็ง
- ยื่อพังผืดที่ถูกสร้างขึ้นภายหลังการเกิดการอักเสบของเนื้อเยื่อหรือภายหลังการฉายรังสี
- การใช้ความร้อนทำลายเนื้อเยื่อในกระบวนการทางศัลยกรรม (Surgical ablation)

4.3. <u>เนื้องอกแบบธรรมดาของหลอดน้ำเหลือง (Lymphangioma)</u>

เมื่อเนื้องอกแบบธรรมดาของหลอดน้ำเหลือง (Lymphangioma) ประกอบด้วยช่องว่างที่ คล้ายหลอดน้ำเหลืองขนาดใหญ่จำนวนมากจะเรียกว่า "Cystic lymphangioma (Cystic hygroma)" โดยเนื้องอกของหลอดน้ำเหลืองชนิดนี้มักจะเป็นรอยโรคที่มีขนาดใหญ่กว่า 10 เซนติเมตรตั้งแต่แรกเกิด ซึ่งจะเกิดได้บ่อยในบริเวณคอและรักแร้ ทั้งนี้ยังสามารถเกิดขึ้นที่ประจันอก และบริเวณหลังเยื่อบุช่องท้อง สำหรับพยาธิกำเนิดของ Cystic lymphangioma (Cystic hygroma) นั้นอาจเกี่ยวข้องกับความล้มเหลวของการสร้างความเชื่อมต่อระหว่างระบบหลอด น้ำเหลืองกับระบบหลอดเลือดดำ

<u>สรุป</u>

- การบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดมักนำไปสู่การเกิดพยาธิสภาพของหลอดเลือดแดงและ หลอดเลือดดำ
- ภาวะสารไขมันสูงในเลือด การสูบบุหรี่ เบาหวาน และความดันโลหิตสูงเป็นปัจจัยเสี่ยงที่สำคัญสำหรับการ
 เกิดการบาดเจ็บของเซลล์บุผนังชั้นในของหลอดเลือดแดง จนทำให้เกิดภาวะหลอดเลือดแดงแข็งเนื่องจาก
 Atherosclerosis ตามมา
- Atherosclerosis เป็นสาเหตุที่พบได้บ่อยของการเกิดการโป่งพองและการเซาะแยกของผนังของหลอด
 เลือดแดงใหญ่ในส่วนช่องท้อง
- การอักเสบของหลอดเลือดแดงมักจะเป็นผลจากโรคภูมิต้านตนเอง และทำให้เกิดการขาดเลือดไปเลี้ยง
 เนื้อเยื่อต่างๆ ที่อยู่ปลายต่อหลอดเลือดแดงนั้นด้วย
- ก้อนลิ่มเลือดซึ่งลอยมาตามกระแสเลือดแล้วอุดหลอดเลือดแดงที่เข้าสู่ปอดขณะที่ยังมีชีวิตอยู่ ส่วนใหญ่มา จากหลอดเลือดดำส่วนลึกที่ขา
- เนื้องอกของหลอดเลือดมีทั้งแบบเนื้องอกธรรมดาและแบบมะเร็ง โดยมะเร็งของหลอดเลือดนี้มักจะพบได้
 ไม่บ่อย
- รอยโรคของหลอดน้ำเหลืองที่เกิดขึ้นบ่อยมีสาเหตุจากการอักเสบ การติดเชื้อ และเนื้องอก

เอกสารอ้างอิง

- (1). Pugsley MK, Tabrizchi R. The vascular system. An overview of structure and function. J Pharmacol Toxicol Methods 2000 Sep-Oct;44(2):333-340.
- (2). Young B, O'Dowd G, Woodford P. Chapter 8: Circulatory system. Wheater's Functional Histology: A Text and Colour Atlas. Sixth ed. United States of America: Elsevier, Churchill Livingstone; 2014. p. 144-158.
- (3). Chapter 8: Disorders of Blood Vessels. In: McConnell TH, Paulson VA, Valasek MA, editors. The Nature of Disease: Pathology for the Health Professions. Second ed. China: Wolters Kluwer Health | Lippincott Williams & Wilkins; 2014. p. 210-236.
- (4). Gallagher PJ, van der Wal AC. Diseases of the arteries and other vessels. In: Cross SS, editor. Underwood's Pathology: A Clinical Approach. Sixth ed. China: Churchill Livingstone, Elsevier; 2013. p. 248-263.
- (5). Gotlieb AI, Liu A. Chapter 16: Blood Vessels. In: Strayer DS, Saffitz JE, Schiller AL, editors. Rubin's Pathology: Clinicopathologic Foundations of Medicine. Seventh ed. China: Wolters Kluwer Health; 2015. p. 577-619.
- (6). Whelton PK, Carey RM, Aronow WS, Casey DE, Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018 Jun;71(6):e13-e115.
- (7). Brashers VL. Diseases of the arteries. In: McCance KL, Huether SE, Brashers VL, Rote NS, editors. Pathophysiology: The Biologic Basis for Disease in Adults and Children. Seventh ed. Canada: Elsevier, Mosby; 2014. p. 1132-1162.
- (8). Drago J, Williams GH, Lilly LS. Chapter 13: Hypertension. In: Lilly LS, editor. Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty. Sixth ed. China: Wolters Kluwer; 2016. p. 310-333.
- (9). Kaplan NM, Victor RG. Causes of hypertension. Kaplan's Clinical Hypertension. Eleventh ed. China: Wolters Kluwer; 2015. p. 13-14.
- (10). Shantsila A, Lip GYH. Malignant Hypertension Revisited-Does This Still Exist? Am J Hypertens 2017 Jun 1;30(6):543-549.
- (11). Aziz M, Yadav KS. Pathogenesis of atherosclerosis: a review. Med Clin Rev 2016;2(3):1-6.
- (12). Shahawy S, Libby P. Chapter 5: Atherosclerosis. In: Lilly LS, editor. Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty. Sixth ed. China: Wolters Kluwer; 2016. p. 112-133.
- (13). Lipinski M, Do D, Morise A, Froelicher V. What percent luminal stenosis should be used to define angiographic coronary artery disease for noninvasive test evaluation? Ann Noninvasive Electrocardiol 2002 Apr;7(2):98-105.

- (14). Renati S, Creager MA. Chapter 15: Diseases of the Peripheral Vasculature. In: Lilly LS, editor. Pathophysiology of Heart Disease: A Collaborative Project of Medical Students and Faculty. Sixth ed. China: Wolters Kluwer; 2016. p. 350-372.
- (15). Schwartz DA. Tertiary syphilis causes neurologic and vascular diseases. In: Strayer DS, Saffitz JE, Schiller AL, editors. Rubin's Pathology: Clinicopathologic Foundations of Medicine. Seventh ed. China: Wolters Kluwer Health; 2015. p. 415-416.
- (16). Owens CD, Gasper WJ, Johnson MD. Aortic dissection. In: Papadakis MA, McPhee SJ, Rabow MW, editors. 2017 Current Medical Diagnosis & Treatment. Fifty-sixth ed. United States of America: McGraw-Hill Education; 2017. p. 484-486.
- (17). Ross MH, Pawlina W. Chapter 13: Cardiovascular System. Histology: A Text and Atlas with Correlated Cell and Molecular Biology. Seventh ed. China: Wolters Kluwer Health; 2016. p. 404-441.
- (18). Roberts WC, Ko JM, Vowels TJ. Natural history of syphilitic aortitis. Am J Cardiol 2009 Dec 1:104(11):1578-1587.
- (19). Chapter 2: Cell Injury, Cell Death, and Adaptatiions. In: Kumar V, Abbas AK, Aster JC, editors. Robbins Basic Pathology. Tenth ed. Canada: Elsevier; 2018. p. 31-54.
- (20). Choi SW, Lew S, Cho SD, Cha HJ, Eum EA, Jung HC, et al. Cutaneous polyarteritis nodosa presented with digital gangrene: a case report. J Korean Med Sci 2006 Apr;21(2):371-373.
- (21). McManus BM, Allard MF, Yanagawa R. Chapter 7: Haemodynamic Disorders. In: Strayer DS, Saffitz JE, Schiller AL, editors. Rubin's Pathology: Clinicopathologic Foundations of Medicine. Seventh ed. China: Wolters Kluwer Health; 2015. p. 299-326.
- (22). Young B, O'Dowd G, Woodford P. Chapter 9: Skin. Wheater's Functional Histology: A Text and Colour Atlas. Sixth ed. United States of America: Elsevier, Churchill Livingstone; 2014. p. 159-179.
- (23). Owens CD, Gasper WJ, Johnson MD. Diseases of the lymphatic channels. In: Papadakis MA, McPhee SJ, Rabow MW, editors. 2017 Current Medical Diagnosis & Treatment. Fifty-sixth ed. United States of America: McGraw-Hill Education; 2017. p. 491-493.

CASE REPORT

Heart transplant for multiple recurrences of familial cardiac myxomas in an adolescent patient: a case report and literature review

Thiyaphat Laohawetwanit^{1*}, Poonchavist Chantranuwatana¹, and Pat Ongcharit²

Abstract

Cardiac myxoma is the most common primary cardiac neoplasm occurring in all age groups. After resection, familial cardiac myxoma is more likely to recur than that arises in sporadic fashion. In this report, we describe an adolescent patient experiencing multiple recurrences of cardiac myxomas and underwent heart transplant. This is the first report of such a case at our institution.

Keywords: cardiac myxoma; Carney complex; embolisation; heart transplant

¹ Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
² Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine,
Chulalongkorn University, Bangkok, Thailand

^{*} Correspondence to: Thiyaphat Laohawetwanit, Department of Pathology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand. Email: thiyaphat@hotmail.com

Introduction

Primary cardiac tumours are rare, with an incidence rate of 0.0017% to 0.19% in unselected autopsies⁽¹⁾. The majority of these tumours are benign. Rhabdomyomas and myxomas are the most common primary tumours of the heart in children and adults, respectively.

Cardiac myxoma is the most common primary neoplasm of the cardiac muscle commonly arising from the endocardium. It can be detected in all age groups (prenatally to 97 years old). Mean age at presentation is between the fourth and seventh decades of life. More than 90% of cardiac myxomas occur sporadically. Less than 10% of them are associated with Carney complex (myxoma syndrome), which is an autosomal dominant pattern of inheritance. This tumour is commonly seen in younger patients without sex predominance⁽²⁾.

High recurrence rate is reported for familial cardiac myxomas; nevertheless, multiple recurrences are very rare⁽³⁾. In this report, we describe a patient having multiple recurrences of multicentric cardiac myxomas and underwent cardiac transplantation. This is the first report of such a case at King Chulalongkorn Memorial Hospital. The study was approved by the institute's ethics committee (COA No. 293/2018 and IRB No. 109/61).

Case report

In 2010, a 10-year-old girl was referred to our hospital due to a mass in left atrium and congestive heart failure. Two months earlier, she developed subacute progressive dyspnoea, which was worsened by exertion. She also had orthopnoea and chest tightness. Initial physical examination revealed right ventricular heave and thrill, pansystolic murmur grade 4/6 at apex and hepatosplenomegaly. Chest x-ray displayed cardiomegaly and pulmonary venous congestion. Neither rash nor endocrinopathy was identified. Her father had recurrent cardiac myxoma with cerebral embolic stroke. He underwent two episodes of surgical removal in 2003 and 2010. Other family members were healthy. She was diagnosed as familial cardiac myxoma. Surgical removal of the mass was performed.

Two years after initial resection of the mass, she developed acute onset of right leg pain and pallor along with new onset of hypertension. Five intracardiac masses were also identified. Two of them were in left atrium. Others were in left ventricle, pulmonary vein and interatrial septum. She was diagnosed as recurrent cardiac myxomas, acute right superficial femoral artery and bilateral renal artery embolism with bilateral renal infarction. Surgical removal of masses, fasciotomy and embolectomy were performed. Bilateral renal infarction was clinically improved by medical treatment. A right ventricular mass was noted in 2 years after the second episode of surgical removal. Excision was done. In three years afterward, she developed multiple intracardiac masses and underwent heart transplantation.

During the course of gross examination, six intramural masses (0.8 - 3.5 cm) in the greatest dimension) are identified (*Figure 1*). Four of them are in the right ventricle. One of them is in

the left atrium. The other mass is in the left ventricle. All of these masses are of solid subtype showing globular, with a smooth and shiny surface. The cut surface is variegated. Whereas most of them show mucoid appearance with tan white cut surface, some of them displayed dark red discolouration (*Figure 2*).

Microscopically, these masses reveal several clusters of myxoma cells, which are characterised by cytologically bland, plump spindle cells possessing oval nuclei and eosinophilic cytoplasm. These cells are around small blood vessels which are surrounded by oedematous stroma (*Figure 3*).

After the patient had undergone heart transplantation, the clinical course was uneventful. Nine months later, she stopped immunosuppressive agents by herself and developed subacute progressive dyspnoea. Initial investigation revealed markedly diminished left ventricular ejection fraction. She also experienced acute acalculous cholecystitis with septic shock. Finally, she passed away.

Her body was sent for autopsy. The heart shows multiple foci of myocardial necrosis with adjacent loose fibrocollagenous stroma containing some lymphocytes (*Figure 4*). These lesions account for approximately 30% of the myocardium. These lymphocytes reveal CD3 immunoreactivity. Subendocardial myocytolysis is occasionally seen. The aorta and coronary arteries are unremarkable. Scattered fibrin thrombi are also observed within pulmonary capillaries and glomeruli.

Figure 1 Multiple cardiac myxomas in the explanted (native) heart ($LA = Left \ atrium$; $RV = Right \ ventricle$; and $LV = Left \ ventricle$).

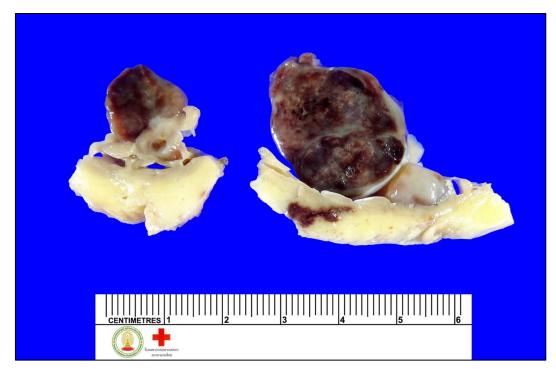


Figure 2 Excised solid myxoma.

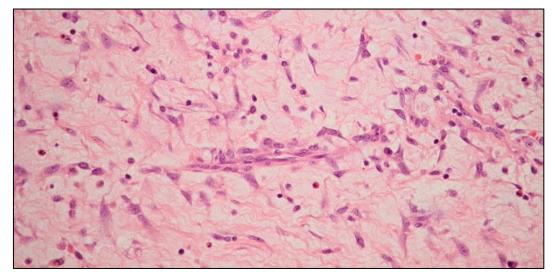


Figure 3 Histologic section of a myxoma (Haematoxylin and eosin, x400).

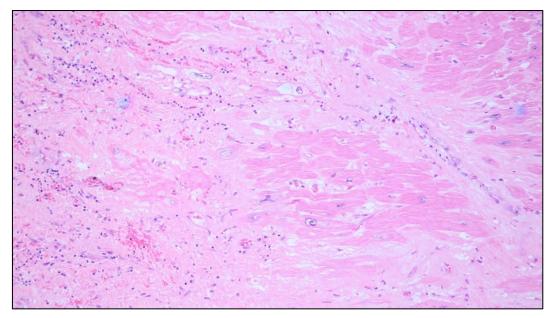


Figure 4 Autopsy finding of the heart (Haematoxylin and eosin, x200).

Discussion

Primary cardiac neoplasms are very uncommon in children and adolescents. The clinical presentation is varied, including dysphoea, chest pain, and cyanosis. Cardiac myxoma is the one of the most common cardiac neoplasms in this subpopulation. According to a systematic review, its prevalence is highest in 10 - 18 years of age. After being resected, this tumour rarely recurred⁽⁴⁾.

Less than 10% of cardiac myxomas are presented in the context of Carney complex $^{(2)}$. Its diagnostic criteria are listed in $Table\ 1^{(3)}$. The patient and her father were presented with cardiac myxomas which were histologically proven. Neither endocrinopathy nor spotty skin pigmentation was identified. This is consistent with the diagnostic criteria of Carney complex. Cardiac myxomas occur at a younger age comparing with those of sporadic cases, multicentrically, and in any, or all, cardiac chambers.

After resection, cardiac myxoma arising in the setting of Carney complex sometimes recurs. Its recurrence rate is approximately 22% comparing with that of 3% observed in non-syndromic tumour⁽⁵⁾. Other risk factor for tumour recurrence is margin status. Embolisation is associated with cardiac myxoma which is villous, soft gelatinous and less than 4.5 cm in the greatest dimension^(2,6). Embolisation to both systemic and pulmonary circulation can occur. Upon examination of the masses, they are soft gelatinous and less than 4.5 cm in the greatest dimension. The patient also developed splenic infarction, bilateral renal infarction and peripheral arterial occlusion.

Table 1 Diagnosis of Carney complex needs the presence of two manifestations of the disease listed or one of these major criteria and one of the supplemental criteria.

Major criteria

- 1. Spotty skin pigmentation with a typical distribution (lips, conjunctiva and inner or outer canthi, vaginal and penile mucosa)
- 2. Myxoma (cutaneous and mucosal)
- 3. Cardiac myxoma
- 4. Breast myxomatosis or fat-suppressed magnetic resonance imaging findings suggestive of this diagnosis
- 5. Primary pigmented nodular adrenocortical disease (PPNAD) or paradoxical positive response of urinary glucocorticosteroids to dexamethasone administration during Liddle's test
- 6. Acromegaly due to GH-producing adenoma
- 7. Large-cell calcifying Sertoli cell tumour (LCCSCT) or characteristic calcification on testicular ultrasonography
- 8. Thyroid carcinoma or multiple, hypoechoic nodules on thyroid ultrasonography, in a young patient
- 9. Psammomatous melanotic schwannoma
- 10. Blue nevus, epithelioid blue nevus (multiple)
- 11. Breast ductal adenoma (multiple)
- 12. Osteochondromyxoma

Supplemental criteria

- 1. Affected first-degree relative
- 2. Inactivating mutation of PRKAR1A gene

Multiple recurrent familial cardiac myxomas are previously reported (*Table 2*)^(5,7-20). These tumours usually occurred in female with varied age of onset, ranging from 10 to 73 years old. The most common site at initial presentation was left atrium. All of these patients were treated with tumour resection. None of them underwent cardiac transplantation. Cardiac myxoma is a rare underlying heart disease underwent heart transplant. Comparing with the previously reported cases, the current case was presented with the early-onset disease. Among Asian countries, common causes of end-stage heart diseases to undergo heart transplant were comparable with those of the global registry. Ischaemic cardiomyopathy, non-ischaemic cardiomyopathy and valvular heart disease were leading causes for recipients to undergo heart transplant, respectively⁽²¹⁾.

Table 2 Reported cases on multiple recurrences of familial cardiac myxomas.

Author	Year	Gender	Age (Years)	Size (cm)	Location	Diagnosis	Presentation	Surgical therapy
Grauer ⁽⁷⁾	1983	F	16	N.A.	LA	Cath	Splenic infarct	Endothelial stripping
			18	N.A.	LA	Cath	Cerebral infarct, hemiparesis	Endothelial stripping
			20	N.A.	RA, LA	Cath	Pneumonia	Resection
			29	N.A.	RA	Cath	N.A.	Resection, atrial septectomy
Gray ⁽⁸⁾	1985	F	18	N.A.	LA	Cath	Bilateral claudication, dyspnoea, haemoptysis	Resection
			29	N.A.	LA, RA	Cath	Murmur, arm claudication	Resection, ASD repair
			42	N.A.	RV, TV, LA	Cath, echo	Dyspnoea, malaise, murmur	Resection, TVR, ASD repair
Wilsher ⁽⁹⁾	1986	F	21	N.A.	RA	Angiography	Chest pain, dyspnoea, malaise	Resection
			29	8	LA	Cath	Cerebral infarct, left brachial artery embolism	Resection
Haught ⁽¹⁰⁾	1991	F	26	N.A.	RA	N.A.	Preoperative evaluation for hysterectomy	Resection
			29	N.A.	RA	Echo	Haemoptysis	Resection
			32	N.A.	LA	Echo	Congestive heart failure	Resection
			34	1.5	LA	Echo	Screening	Resection
Singh ⁽¹¹⁾	1996	F	32	N.A.	RA	Cath	Fatigue, weight loss, pedal oedema	Resection
			40	N.A.	LA	Echo	Pulmonary embolism	Resection
			46	N.A.	LA	Echo	Tachycardia, weight loss	Resection
		М	21	1.5	LV (multiple)	Echo	Cerebral infarct	Resection
			24	N.A.	RA	Echo	Intermittent numbness	Resection, ASD repair
Mahilmaran ⁽¹²⁾	2003	М	12	8, 3	RA, LA	Echo	Swelling of legs and face, abdominal distention, breathlessness	Resection, ASD repair
			14	4	MV	Echo	Screening	Not done (psychiatric problem)
Kojima ⁽¹³⁾	2005	F	39	3.8	LA	Echo	Cough, dyspnoea	Resection
			43	N.A.	LA, LV (multiple)	Echo	Screening	Resection

Note: ASD = Atrial septal defect; Cath = Cardiac catheterisation; CT = Computed tomography; Echo = Echocardiography; F = Female; LA = Left atrium; LV = Left ventricle; M = Male; MRI = Magnetic resonance imaging; N.A. = Not applicable; RA = Right atrium; RV = Right ventricle; TV = Tricuspid valve; and TVR = Tricuspid valve replacement

Table 2 (Continued) Reported cases on multiple recurrences of familial cardiac myxomas.

Author	Year	Gender	Age	Size	Location	Diagnosis	Presentation	Surgical therapy
(14)		_	(Years)	(cm)				
Akbarzadeh ⁽¹⁴⁾	2005	F	17	N.A.	LA	N.A.	Cerebral infarct	Resection
			33	N.A.	LA	N.A.	N.A.	Resection
			35	N.A.	LA (multiple), LV	Echo	Dyspnoea, paresis of the left hand	Resection
Turhan ⁽¹⁵⁾	2008	F	10	N.A.	LA	Echo	N.A.	Resection
			14	1.4	LA	Echo	Screening	Follow-up
			42	N.A.	LA	N.A.	N.A.	Resection
			44	N.A.	LA	N.A.	N.A.	Resection
			46	5.7	LA	Echo	Screening	Resection
Roy ⁽¹⁶⁾	2011	F	31	N.A.	LA	N.A.	N.A.	Resection
			38	2.5, 4	LA, RA	Echo, MRI	Visual disturbance	Resection, ASD repair
Cao ⁽¹⁷⁾	2011	F	21	4	LA	Echo	N.A.	Resection
			26	4, 0.4	LA (x2)	Echo	Dyspnoea, palpitation and fatigability	Resection
Tamura ⁽¹⁸⁾	2014	F	20	N.A.	LA	N.A.	N.A.	Resection
			28	N.A.	LA	N.A.	N.A.	Resection
			45	N.A.	RV	Echo	Loss of consciousness, infective endocarditis	Resection, tricuspid valve annuloplasty
Azzam ⁽¹⁹⁾	2014	М	36	N.A.	LA	N.A.	N.A.	Resection
			40	N.A.	LA	Echo, CT	N.A.	Resection
			41	N.A.	LA	Echo, CT	N.A.	Resection
			51	3	LA	Echo, CT	Screening	Resection
Kwon ⁽⁵⁾	2016	F	14	N.A.	RA, LA	N.A.	N.A.	Resection, ASD repair
			24	N.A.	LA, LV	N.A.	N.A.	Resection, ASD repair
			40	N.A.	RA	N.A.	N.A.	Resection, ASD repair
			46	10	RA	Echo, CT	Chest discomfort, dyspnoea	Resection

Note: ASD = Atrial septal defect; Cath = Cardiac catheterisation; CT = Computed tomography; Echo = Echocardiography; F = Female; LA = Left atrium; LV = Left ventricle; M = Male; MRI = Magnetic resonance imaging; N.A. = Not applicable; RA = Right atrium; RV = Right ventricle; TV = Tricuspid valve; and TVR = Tricuspid valve replacement

Table 2 (Continued) Reported cases on multiple recurrences of familial cardiac myxomas.

Author	Year	Gender	Age (Years)	Size (cm)	Location	Diagnosis	Presentation	Surgical therapy
Schmidt ⁽²⁰⁾	2017	М	73	N.A.	LA	N.A.	N.A.	N.A.
			78	N.A.	Intra-atrial septum	Echo	Visual loss of right eye, pre-syncopal episodes	Resection
Current case	2018	F	10	5.5	LA	Echo	Congestive heart failure	Resection
			12	0.5 – 4.5	LA (x2), LV, pulmonary vein,	Echo	Acute arterial occlusion	Resection, splenectomy, fasciotomy,
					interatrial septum			embolectomy
			14	6	RV	Echo	Screening	Resection
			17	0.8 - 3.5	RV (x4), LA, LV	Echo	Screening	Heart transplant

Note: ASD = Atrial septal defect; Cath = Cardiac catheterisation; CT = Computed tomography; Echo = Echocardiography; F = Female; LA = Left atrium; LV = Left ventricle; M = Male; MRI = Magnetic resonance imaging; N.A. = Not applicable; RA = Right atrium; RV = Right ventricle; TV = Tricuspid valve; and TVR = Tricuspid valve replacement

Historically, we initiated a heart transplant program in 1987 with our first orthotopic heart transplant in December 1988, which was also the first case in Southeast Asia⁽²²⁾. According to Thai Transplantation Society report, intrathoracic organ transplantation has been most frequently performed at King Chulalongkorn Memorial Hospital since 2008⁽²³⁾. The presented case is the first case of end-stage heart disease due to multiple recurrences of familial cardiac myxomas to undergo heart transplant at our institution.

Conclusions

We presented a case with multiple recurrences of familial cardiac myxomas who underwent heart transplant at our institution. Multifocal and recurrent cardiac myxomas seem more common in younger age group who has a family history of tumour. After nine months of heart transplantation, she passed away as a result of acute cellular rejection and septic shock.

References

- (1). Reynen K. Cardiac myxomas. N Engl J Med. 1995;333(24):1610-7.
- (2). Travis WD, Brambilla E, Burke A, Marx A, Nicholson AG. WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: International Agency for Research on Cancer; 2015.
- (3). Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patient evaluation. J Clin Endocrinol Metab. 2001;86(9):4041-6.
- (4). Tzani A, Doulamis IP, Mylonas KS, Avgerinos DV, Nasioudis D. Cardiac Tumors in Pediatric Patients: A Systematic Review. World J Pediatr Congenit Heart Surg. 2017;8(5):624-32.
- (5). Kwon OY, Kim GJ, Jang WS, Lee YO, Cho JY, Lee JT. Fourth Recurrence of Cardiac Myxoma in a Patient with the Carney Complex. Korean J Thorac Cardiovasc Surg. 2016;49(2):119-21.
- (6). Wang Z, Chen S, Zhu M, Zhang W, Zhang H, Li H, et al. Risk prediction for emboli and recurrence of primary cardiac myxomas after resection. J Cardiothorac Surg. 2016;11:22.
- (7). Grauer K, Grauer MC. Familial atrial myxoma with bilateral recurrence. Heart Lung. 1983;12(6):600-2.
- (8). Gray IR, Williams WG. Recurring cardiac myxoma. Br Heart J. 1985;53(6):645-9.
- (9). Wilsher ML, Roche AH, Neutze JM, Synek BJ, Holdaway IM, Nicholson GI. A familial syndrome of cardiac myxomas, myxoid neurofibromata, cutaneous pigmented lesions, and endocrine abnormalities. Aust N Z J Med. 1986;16(3):393-6.
- (10). Haught WH, Alexander JA, Conti CR. Familial recurring cardiac myxoma. Clin Cardiol. 1991;14(8):692-5.6.

- (11). Singh SD, Lansing AM. Familial cardiac myxoma--a comprehensive review of reported cases. J Ky Med Assoc. 1996;94(3):96-104.
- (12). Mahilmaran A, Seshadri M, Nayar PG, Sudarsana G, Abraham KA. Familial cardiac myxoma: Carney's complex. Tex Heart Inst J. 2003;30(1):80-2.
- (13). Kojima S, Sumiyoshi M, Watanabe Y, Suwa S, Matsumoto M, Nakata Y, et al. A Japanese case of familial cardiac myxoma associated with a mutation of the PRKAR1alpha gene. Intern Med. 2005;44(6):607-10.
- (14). Akbarzadeh Z, Esmailzadeh M, Yousefi A, Safaei A, Raisi K, Sharifi F. Multicentric familial cardiac myxoma. Eur J Echocardiogr. 2005;6(2):148-50.
- (15). Turhan S, Tulunay C, Altin T, Dincer I. Second recurrence of familial cardiac myxomas in atypical locations. Can J Cardiol. 2008;24(9):715-6.
- (16). Shetty Roy AN, Radin M, Sarabi D, Shaoulian E. Familial recurrent atrial myxoma: Carney's complex. Clin Cardiol. 2011;34(2):83-6.
- (17). Cao H, Wu Y, Zhu J, Chen Y. Familial cardiac myxoma with multifocal recurrences: a case report and review of the literature. J Biomed Res. 2011;25(5):368-72.
- (18). Tamura Y, Seki T. Carney complex with right ventricular myxoma following second excision of left atrial myxoma. Ann Thorac Cardiovasc Surg. 2014;20 Suppl:882-4.
- (19). Azzam R, Abdelbar A, Yap KH, Abousteit A. Carney complex: fourth time excision of recurrent atrial myxoma via left thoracotomy. BMJ Case Rep. 2014;2014.
- (20). Schmidt C, Doi A, Ura M, Cole C, Mundy J. Familial Atrial Myxoma: Three Related Cases at an Australian Tertiary Institution. Ann Thorac Cardiovasc Surg. 2017;23(4):203-6.
- (21). Krittayaphong R, Ariyachaipanich A. Heart Transplant in Asia. Heart Fail Clin. 2015;11(4):563-72.
- (22). Ongcharit P, Wongkietkachorn K, Sritangsirikul S, Namchaisiri J, Singhatanatkit S, Luengtaviboon K, et al. Heart transplantation 1987-2007: 20 years' experience at Chulalongkorn hospital. Transplant Proc. 2008;40(8):2591-3.
- (23). Thai-transplant.org. 2016 Annual Report of Organ Transplantation in Thailand [Internet]. 2016 [cited 27 January 2018]. Available from: http://www.thai-transplant.org/pic/File/Translate%20Registry%202016%20_English_.pdf.

APPENDIX 1 INFORMATION FOR AUTHORS

All authors listed in a paper submitted to Asian Archives of Pathology (AAP) must have contributed substantially to the work. It is the corresponding author who takes responsibility for obtaining permission from all co-authors for the submission. When submitting the paper, the corresponding author is encouraged to indicate the specific contributions of all authors (the author statement, with signatures from all authors and percentage of each contribution can be accepted). Examples of contributions include: designed research, performed research, contributed vital new reagents or analytical tools, analysed data, and wrote the paper. An author may list more than one type of contribution, and more than one author may have contributed to the same aspect of the work.

Authors should take care to exclude overlap and duplication in papers dealing with related materials. See also paragraph on Redundant or Duplicate Publication in "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" at http://www.icmje.org/index.html.

The submitted manuscripts will be reviewed by the members of the Editorial Board or the expert reviewers. At the discretion of the Editorial Board, the manuscripts may be returned immediately without full review, if deemed not competitive or outside the realm of interests of the majority of the readership of the Journal. The decision (reject, invite revision, and accept) letter will be coming from the Editorial Board who has assumed responsibility for the manuscript's review. The editor's decision is based not just on technical merit of the work, but also on other factors such as the priority for publication and the relevance to the Journal's general readership. All papers are judged in relation to other submissions currently under consideration.

Categories of Manuscripts

1. Letters to the Editor

The letters to the editor are the reactions to any papers published in AAP. These letters will be reviewed by the Editorial Board and sent to the authors of the original paper with an invitation to respond. Letters and eventual responses will be published together, when appropriate.

■ Word Count: 300 – 500 words (excluding references and figure or table legends)

Abstract: Not required

■ References: Maximum of 10

■ Figure or Table: Maximum of 1 (if needed)

2. Original Articles

The original articles are the researches describing the novel understanding of anatomical pathology, clinical pathology (laboratory medicine), forensic medicine (legal medicine or medical jurisprudence), molecular medicine or pathobiology. Systematic reviews, meta-analyses and clinical trials are classified as articles. The articles should be clearly and concisely written in the well-organised form (see *Organisation of Manuscripts*): abstract; introduction; materials and methods; results; discussion; and conclusions. The manuscripts that have passed an initial screening by the Editorial Board will be reviewed by two or more experts in the field.

■ <u>Word Count</u>: 3,000 – 5,000 words (excluding abstract, references, and figure or table legends)

■ <u>Structured Abstract</u> (see **Organisation of Manuscripts**): 150 – 200 words

References: Maximum of 150

■ Figures or Tables: Maximum of 6

3. Review Articles

The review articles are generally invited by the Editor-in-Chief. They should focus on a topic of broad scientific interest and on recent advances. These articles are peer-reviewed before the final decision to accept or reject the manuscript for publication. Therefore, revisions may be required.

 Word Count: 3,000 – 5,000 words (excluding abstract, references, and figure or table legends)

■ <u>Unstructured Abstract</u>: 150 – 200 words

■ <u>References</u>: Maximum of 150

■ Figures or Tables: Maximum of 4

4. Case Reports

AAP limits publication of case reports to those that are truly novel, unexpected or unusual, provide new information about anatomical pathology, clinical pathology (laboratory medicine) or forensic medicine (legal medicine or medical jurisprudence). In addition, they must have educational value for the aforementioned fields. The journal will not consider case reports describing preventive or therapeutic interventions, as these generally require stronger evidence. Case reports that involve a substantial literature review should be submitted as a review article. The submitted case reports will undergo the usual peer-reviewed process.

■ <u>Word Count</u>: 1,200 – 2,000 words (excluding abstract, references, and figure or table legends)

■ Unstructured Abstract: 150 – 200 words

References: Maximum of 20

Figures or Tables: Maximum of 4

5. Case Illustrations

Case illustrations are aimed to provide education to readers through multidisciplinary clinicopathological discussions of interesting cases. The manuscript consists of a clinical presentation or description, laboratory investigations, discussion, final diagnosis, and up to 5 take-home messages (learning points). Regarding continuous learning through self-assessment, each of the case illustrations will contain 3-5 multiple choice questions (MCQs) with 4-5 suggested answers for each question. These MCQs are placed after the final diagnosis and the correct answers should be revealed after the references. The questions and take-home messages (learning points) are included in the total word count. The manuscripts that have passed an initial screening by the Editorial Board will be reviewed by two experts in the field.

■ <u>Word Count</u>: 1,000 – 2,000 words (excluding references and figure or table legends)

Abstract: Not required

■ <u>References</u>: Maximum of 10

Figures: Maximum of 2Tables: Maximum of 5

6. Technical Notes

The technical notes are brief descriptions of scientific techniques used in the anatomical pathology, clinical pathology (laboratory medicine), forensic medicine (legal medicine or medical jurisprudence), molecular medicine or pathobiology. The submitted manuscripts are usually peer-reviewed.

 Word Count: Maximum of 1,000 words (excluding references and figure or table legends)

Abstract: Not required

References: Maximum of 5

■ Figures or Tables: Maximum of 2

Organisation of Manuscripts

1. General Format

The manuscripts written in English language are preferable. However, Thai papers are also acceptable, but their title pages, abstracts, and keywords must contain both Thai and English. These English and Thai manuscripts are prepared in A4-sized Microsoft Word documents with leaving 2.54-cm (1-inch) margins on all sides. All documents are required to be aligned left and double-spaced throughout the entire manuscript. The text should be typed in 12-point regular Times New Roman font for English manuscript and 16-point regular TH SarabunPSK font for Thai manuscript.

The running titles of English and Thai manuscripts are placed in the top left-hand corner of each page. They cannot exceed 50 characters, including spaces between words and punctuation. For the header of English paper, the running title will be typed in all capital letters. The page number goes on the top right-hand corner.

Footnotes are not used in the manuscripts, but parenthetical statements within text are applied instead and sparingly. Abbreviations should be defined at first mention and thereafter used consistently throughout the article. The standard abbreviations for units of measure must be used in conjunction with numbers.

All studies that involve human subjects should not mention subjects' identifying information (e.g. initials) unless the information is essential for scientific purposes and the patients (or parents or guardians) give written informed consent for publication.

2. Title Page

The title page is the first page of the manuscripts and must contain the following:

- The title of the paper (not more than 150 characters, including spaces between words)
- The full names, institutional addresses, and email addresses for all authors (If authors regard it as essential to indicate that two or more co-authors are equal in status, they may be identified by an asterisk symbol with the caption "These authors contributed equally to this work" immediately under the address list.)

- The name, surname, full postal address, telephone number, facsimile number, and email address of the corresponding author who will take primary responsibility for communication with AAP.
- Conflict of interest statement (If there are no conflicts of interest for any author, the following statement should be inserted: "The authors declare that they have no conflicts of interest with the contents of this article.")

3. Abstract

A structured form of abstract is used in all Original Article manuscripts and must include the following separate sections:

- <u>Background</u>: The main context of the study
- <u>Objective</u>: The main purpose of the study
- Materials and Methods: How the study was performed
- Results: The main findings
- Conclusions: Brief summary and potential implications
- Keywords: 3 5 words or phrases (listed in alphabetical order) representing the main content of the article

4. Introduction

The Introduction section should clearly explain the background to the study, its aims, a summary of the existing literature and why this study was necessary or its contribution to the field.

5. Materials and Methods

The Materials and Methods section must be described in sufficient detail to allow the experiments or data collection to be reproduced by others. Common routine methods that have been published in detail elsewhere should not be described in detail. They need only be described in outline with an appropriate reference to a full description. Authors should provide the names of the manufacturers and their locations for any specifically named medical equipment and instruments, and all chemicals and drugs should be identified by their systematic and pharmaceutical names, and by their trivial and trade names if relevant, respectively. Calculations and the statistical methods employed must be described in this section.

All studies involving animal or human subjects must abide by the rules of the appropriate Internal Review Board and the tenets of the recently revised Helsinki protocol. Hence, the manuscripts must include the name of the ethics committee that approved the study and the committee's reference number if appropriate.

6. Results

The Results section should concisely describe the findings of the study including, if appropriate, results of statistical analysis which must be presented either in the text or as tables and figures. It should follow a logical sequence. However, the description of results should not simply repeat the data that appear in tables and figures and, likewise, the same data should not be displayed in both tables and figures. Any chemical equations, structural formulas or mathematical equations should be placed between successive lines of text. The authors do not discuss the results or draw any conclusions in this section.

7. Discussion

The Discussion section should focus on the interpretation and the significance of the findings against the background of existing knowledge. The discussion should not repeat information in the results. The authors will clearly identify any aspects that are novel. In addition, there is the relation between the results and other work in the area.

8. Conclusions

The Conclusions section should state clearly the main summaries and provide an explanation of the importance and relevance of the study reported. The author will also describe some indication of the direction future research should take.

9. Acknowledgements

The Acknowledgements section should be any brief notes of thanks to the following:

- Funding sources
- A person who provided purely technical help or writing assistance
- A department chair who provided only general support
- Sources of material (e.g. novel drugs) not available commercially

Thanks to anonymous reviewers are not allowed. If you do not have anyone to acknowledge, please write "Not applicable" in this section.

10. References

The Vancouver system of referencing should be used in the manuscripts. References should be cited numerically in the order they appear in the text. The authors should identify references in text, tables, and legends by Arabic numerals in parentheses or as superscripts. Please give names of all authors and editors. The references should be numbered and listed in order of appearance in the text. The names of all authors are cited when there are six or fewer. When there are seven or more, only the first three followed by "et al." should be given. The names of journals should be abbreviated in the style used in Index Medicus (see examples below). Reference to unpublished data and personal

communications should not appear in the list but should be cited in the text only (e.g. A Smith, unpubl. Data, 2000).

Journal article

1. Sibai BM. Magnesium sulfate is the ideal anticonvulsant in preeclampsia – eclampsia. Am J Obstet Gynecol 1990; 162: 1141 – 5.

Books

2. Remington JS, Swartz MN. Current Topics in Infectious Diseases, Vol 21. Boston: Blackwell Science Publication, 2001.

Chapter in a book

3. Cunningham FG, Hauth JC, Leveno KJ, Gilstrap L III, Bloom SL, Wenstrom KD. Hypertensive disorders in pregnancy. In: Cunningham FG, Hauth JC, Leveno KJ, Gilstrap L III, Brom SL, Wenstrom KD, eds. Williams Obstetrics, 22nd ed. New York: McGraw-Hill, 2005: 761 – 808.

11. Tables

The tables should be self-contained and complement, but without duplication, information contained in the text. They should be numbered consecutively in Arabic numerals (Table 1, Table 2, etc.). Each table should be presented on a separate page with a comprehensive but concise legend above the table. The tables should be double-spaced and vertical lines should not be used to separate the columns. The column headings should be brief, with units of measurement in parentheses. All abbreviations should be defined in footnotes. The tables and their legends and footnotes should be understandable without reference to the text. The authors should ensure that the data in the tables are consistent with those cited in the relevant places in the text, totals add up correctly, and percentages have been calculated correctly.

12. Figure Legends

The legends should be self-explanatory and typed on a separate page titled "Figure Legends". They should incorporate definitions of any symbols used and all abbreviations and units of measurement should be explained so that the figures and their legends are understandable without reference to the text.

If the tables or figures have been published before, the authors must obtain written permission to reproduce the materials in both print and electronic formats from the copyright owner and submit them with the manuscripts. These also follow for quotes, illustrations, and other materials taken from previously published works not in the public domain. The original resources should be cited in the figure captions or table footnotes.

13. Figures

All illustrations (line drawings and photographs) are classified as figures. The figures should be numbered consecutively in Arabic numerals (Figure 1, Figure 2, etc.). They are submitted electronically along with the manuscripts. These figures should be referred to specifically in the text of the papers but should not be embedded within the text. The following information must be stated to each microscopic image: staining method, magnification (especially for electron micrograph), and numerical aperture of the objective lens. The authors are encouraged to use digital images (at least 300 d.p.i.) in .jpg or .tif formats. The use of three-dimensional histograms is strongly discouraged when the addition of these histograms give no extra information.

14. Components

14.1. Letters to the Editor

The Letter to the Editor manuscripts consist of the following order:

- Title Page
- Main Text
- References
- Table (if needed)
- Figure Legend (if needed)
- Figure (if needed)

14.2. Original Articles

The Original Article manuscripts consist of the following order:

- Title Page
- Structured Abstract
- Introduction
- Materials and Methods
- Results
- Discussion
- Conclusions
- Acknowledgements
- References
- Table (s)
- Figure Legend (s)
- Figure (s)

14.3. Review Articles

The Review Article manuscripts consist of the following order:

- Title Page
- Unstructured Abstract

- Introduction
- Main Text
- Conclusions
- Acknowledgements
- References
- Table (s)
- Figure Legend (s)
- Figure (s)

14.4. Case Reports

The Case Report manuscripts consist of the following order:

- Title Page
- Unstructured Abstract
- Introduction
- Case Description
- Discussion
- Conclusions
- Acknowledgements
- References
- Table (s)
- Figure Legend (s)
- Figure (s)

14.5. Case Illustrations

The Case Illustration manuscripts consist of the following order:

- Title Page
- Clinical Presentation or Description
- Laboratory Investigations
- Discussion
- Final Diagnosis
- Multiple Choice Questions (MCQs)
- Take-Home Messages (Learning Points)
- Acknowledgements
- References
- Correct Answers to MCQs
- Table (s)
- Figure Legend (s)
- Figure (s)

14.6. Technical Notes

The Technical Note manuscripts consist of the following order:

- Title Page
- Introduction
- Main text
- Conclusions
- Acknowledgements
- References
- Table (s)
- Figure Legend (s)
- Figure (s)

Proofreading

The authors of the accepted manuscripts will receive proofs and are responsible for proofreading and checking the entire article, including tables, figures, and references. These authors should correct only typesetting errors at this stage and may be charged for extensive alterations. Page proofs must be returned within 48 hours to avoid delays in publication.

Revised Manuscripts

In many cases, the authors will be invited to make revisions to their manuscripts. The revised manuscripts must generally be received by the Editorial Board within 3 months of the date on the decision letter or they will be considered a new submission. An extension can sometimes be negotiated with the Editorial Board.

APPENDIX 2 BENEFITS OF PUBLISHING WITH ASIAN ARCHIVES OF PATHOLOGY

Asian Archives of Pathology (AAP) is an open access journal. Open Access makes your works freely available to everyone in the world. It provides a significant boost to the readership of your articles, and has been shown to have an increase in positive influence on citations and reuse. Hence, open-access leads to more recognition for our esteemed authors.

The journal has been sponsored by the Royal College of Pathologists of Thailand. We have the policy to disseminate the verified scientific knowledge to the public on a non-profit basis. Hence, we have not charged the authors whose manuscripts have been submitted or accepted for publication in our journal.

Since AAP is also a peer-reviewed journal, the submitted manuscripts will be reviewed by the members of the Editorial Board or the expert reviewers. The decision on these manuscripts is processed very fast without any delay and in shortest possible time. The processing period is 1-2 weeks. These decisions of the reviewers are unbiased and the decision (reject, invite revision, and accept) letter coming from the Editorial Board is always conveyed to the authors.

APPENDIX 3 SUBMISSION OF THE MANUSCRIPTS

- **Step 1:** Access www.asianarchpath.com
- **Step 2:** If you did not register before, please create an account first.
- **Step 3:** Login with your username and password.
- **Step 4:** Click the "+ New Submission" button on the upper right-hand side of the page.
- **Step 5:** Proceed to fill up the Submission Form online and follow the directions given therein.
- **Step 6:** Upload your manuscript file (s).
- Step 7: Re-check the content of your manuscript (s) and the uploaded file (s) more carefully prior to the submission. If you have submitted your manuscript file (s) incorrectly, you must contact Editor-in-Chief of Asian Archives of Pathology immediately. The Editor-in-Chief can clear the incorrect attempt and allow you another submission.
- **Step 8:** Click the "Submit Manuscript" button under Important Notice.

If you have any further enquires, please do not hesitate to contact the Journal.

APPENDIX 4 CONTACT THE JOURNAL

The Editorial Office of Asian Archives of Pathology

Department of Pathology, Floor 6, Her Royal Highness Princess Bejaratana Building
Phramongkutklao College of Medicine
317 Rajavithi Road, Rajadevi, Bangkok 10400 Thailand

Telephone: +66 (0) 90 132 2047

Fax: +66 (0) 2 354 7791

Email: editor@asianarchpath.com

APPENDIX 5 SUPPORT THE JOURNAL

Asian Archives of Pathology (AAP) has a mission of disseminating the unbiased and reliable medical knowledge on a non-profit basis. If you consider that this journal is useful for the public, you can support us by submitting your advertisements via the contact information below.

Dr Chetana Ruangpratheep

The Editorial Office of Asian Archives of Pathology

Department of Pathology, Floor 6, Her Royal Highness Princess Bejaratana Building

Phramongkutklao College of Medicine

317 Rajavithi Road, Rajadevi, Bangkok 10400 Thailand

Telephone: +66 (0) 90 132 2047

Fax: +66 (0) 2 354 7791 Email: editor@asianarchpath.com

Every support, small or big, can make a difference.

Thank you

Perangger heys

Dr Chetana Ruangpratheep

MD, FRCPath (Thailand), MSc, PhD

Editor-in-Chief of Asian Archives of Pathology

ACADEMIC MEETINGS AND CONFERENCES

Announcements of academic meetings and conferences that are of interest to the readers of Asian Archives of Pathology (AAP) should be sent to the Editor-in-Chief at least 3 months before the first day of the month of issue. The contact information is shown below.

Dr Chetana Ruangpratheep

The Editorial Office of Asian Archives of Pathology

Department of Pathology, Floor 6, Her Royal Highness Princess Bejaratana Building

Phramongkutklao College of Medicine

317 Rajavithi Road, Rajadevi, Bangkok 10400 Thailand

Telephone: +66 (0) 90 132 2047

Fax: +66 (0) 2 354 7791

Email: editor@asianarchpath.com

WHAT IS INSIDE THIS ISSUE?

Original Article:

Assessment of the usefulness of the knowledge of pathology	1
Review Article:	
The essentials of vascular pathology Chetana Ruangpratheep	13
Case Report:	
Heart transplant for multiple recurrences of familial cardiac	34
myxomas in an adolescent patient: a case report and	
literature review	
Thiyaphat Laohawetwanit, Poonchavist Chantranuwatana, and Pat Ongcharit	